There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
翻译:有多种抽象的尺度,我们可以从中描述相同的图像,这取决于我们是否侧重于细微的图像细节,还是图像的更全球性属性。在大脑绘图中,学习自动分析图像,以构建小规模特征(例如细胞或血管的存在)和全球图像特性(例如,图像来自哪个大脑区域)的表达方式。然而,大多数现有的神经肛门图象数据集和基准每次只考虑一个单一的下游任务。为了缩小这一差距,我们引入了一个新的数据集、说明和多个下游任务,为从同一图像读取关于大脑结构和结构的信息提供了不同的方式。我们的多功能神经成像基准(MTNeuro)建在体积、微米分辨率X射线显微镜图象上,覆盖了大面积的鼠脑的伸缩图层部分,包括多个肿瘤和亚皮质区域。我们产生了一些不同的预测挑战,并评估了几个监督和自我监督的模型,用于脑区域内部结构的大脑-区域预测和结构的自我剖析。我们多层次的下游图象模型只能用来进行这样的学习。