The present study investigates the impact of the Rational Discrete Wavelet Transform (RDWT), used as a plug-in preprocessing step for motor imagery electroencephalographic (EEG) decoding prior to applying deep learning classifiers. A systematic paired evaluation (with/without RDWT) is conducted on four state-of-the-art deep learning architectures: EEGNet, ShallowConvNet, MBEEG\_SENet, and EEGTCNet. This evaluation was carried out across three benchmark datasets: High Gamma, BCI-IV-2a, and BCI-IV-2b. The performance of the RDWT is reported with subject-wise averages using accuracy and Cohen's kappa, complemented by subject-level analyses to identify when RDWT is beneficial. On BCI-IV-2a, RDWT yields clear average gains for EEGTCNet (+4.44 percentage points, pp; kappa +0.059) and MBEEG\_SENet (+2.23 pp; +0.030), with smaller improvements for EEGNet (+2.08 pp; +0.027) and ShallowConvNet (+0.58 pp; +0.008). On BCI-IV-2b, the enhancements observed are modest yet consistent for EEGNet (+0.21 pp; +0.044) and EEGTCNet (+0.28 pp; +0.077). On HGD, average effects are modest to positive, with the most significant gain observed for MBEEG\_SENet (+1.65 pp; +0.022), followed by EEGNet (+0.76 pp; +0.010) and EEGTCNet (+0.54 pp; +0.008). Inspection of the subject material reveals significant enhancements in challenging recordings (e.g., non-stationary sessions), indicating that RDWT can mitigate localized noise and enhance rhythm-specific information. In conclusion, RDWT is shown to be a low-overhead, architecture-aware preprocessing technique that can yield tangible gains in accuracy and agreement for deep model families and challenging subjects.
翻译:本研究探讨了有理数离散小波变换作为一种即插即用的预处理步骤,在应用深度学习分类器之前对运动想象脑电信号解码的影响。我们在四种先进的深度学习架构上进行了系统的配对评估(使用/不使用RDWT):EEGNet、ShallowConvNet、MBEEG_SENet和EEGTCNet。该评估在三个基准数据集上进行:High Gamma、BCI-IV-2a和BCI-IV-2b。RDWT的性能以被试为单位,使用准确率和Cohen's kappa系数报告平均值,并辅以被试层面的分析以确定RDWT何时有益。在BCI-IV-2a数据集上,RDWT为EEGTCNet带来了明显的平均增益(+4.44个百分点,pp;kappa +0.059),为MBEEG_SENet带来增益(+2.23 pp;+0.030),而对EEGNet(+2.08 pp;+0.027)和ShallowConvNet(+0.58 pp;+0.008)的改进较小。在BCI-IV-2b数据集上,观察到的提升虽然不大但对EEGNet(+0.21 pp;+0.044)和EEGTCNet(+0.28 pp;+0.077)是持续的。在HGD数据集上,平均效果为轻微至正向,其中MBEEG_SENet获得最显著的增益(+1.65 pp;+0.022),其次是EEGNet(+0.76 pp;+0.010)和EEGTCNet(+0.54 pp;+0.008)。对个体被试数据的检查揭示了在具有挑战性的记录(例如非平稳会话)中存在显著增强,表明RDWT可以缓解局部噪声并增强节律特异性信息。总之,RDWT被证明是一种低开销、架构感知的预处理技术,能够为深度模型家族和具有挑战性的被试在准确率和一致性方面带来切实的增益。