This paper deals with the maximum independent set (M.I.S.) problem, also known as the stable set problem. The basic mathematical programming model that captures this problem is an Integer Program (I.P.) with zero-one variables $x_j$ and only the \textit{edge inequalities} with an objective function value of the form $~\textstyle \sum_{j=1}^N x_j~$ where $N$ is the number of vertices in the input. We consider $LP(k)$, which is the Linear programming (LP) relaxation of the I.P. with an additional constraint $\textstyle \sum_{j=1}^N x_j = k ~~ (0 \le k \le N). ~~ $ We then consider a convex programming variant $CP(k)$ of $LP(k)$, which is the same as $LP(k)$, except that the objective function is a nonlinear convex function (which we minimise). $~$The M.I.S. problem can be solved by solving $CP(k)$ for every value of $k$ in the interval $~0 \le k \le N~$ where the convex function is minimised using a \it{bin packing} type of approach. In this paper, we present efforts to developing a convex function for $CP(k)$.
翻译:本文涉及最大独立的数据集( M. I. S. ) 问题, 也称为稳定设置问题 。 包含该问题的基本数学编程模式是一整列程序( I. P.), 包含零一变量 $x_ j$, 且只有\ textit{ geet不平等}, 其客观函数值为 ${ textstyle \ sum_ j=1\\ nxx_j_ j~ 美元, 其中输入的顶点为$( k) 。 我们考虑的是 $( k) $( k), 但目标函数是 I. P. P. 的线性( L. P), 这是I. 的线性程序( L. P. ) 放松, 还有一个额外的限制 $\ sumlestrue =1\\\\\ n_ j= k\ k = k = k@ k. ( le k) le k) 。 我们考虑的是, le proglex max le max le le legle roduction.