The phenomenon of adversarial examples has been revealed in variant scenarios. Recent studies show that well-designed adversarial defense strategies can improve the robustness of deep learning models against adversarial examples. However, with the rapid development of defense technologies, it also tends to be more difficult to evaluate the robustness of the defensed model due to the weak performance of existing manually designed adversarial attacks. To address the challenge, given the defensed model, the efficient adversarial attack with less computational burden and lower robust accuracy is needed to be further exploited. Therefore, we propose a multi-objective memetic algorithm for auto adversarial attack optimization design, which realizes the automatical search for the near-optimal adversarial attack towards defensed models. Firstly, the more general mathematical model of auto adversarial attack optimization design is constructed, where the search space includes not only the attacker operations, magnitude, iteration number, and loss functions but also the connection ways of multiple adversarial attacks. In addition, we develop a multi-objective memetic algorithm combining NSGA-II and local search to solve the optimization problem. Finally, to decrease the evaluation cost during the search, we propose a representative data selection strategy based on the sorting of cross entropy loss values of each images output by models. Experiments on CIFAR10, CIFAR100, and ImageNet datasets show the effectiveness of our proposed method.
翻译:不同的假设情景中揭示了对抗性实例的现象。最近的研究表明,设计完善的对抗性防御战略可以提高针对对抗性实例的深层次学习模式的稳健性能。然而,随着防御技术的迅速发展,由于现有人工设计的对抗性攻击表现不力,也往往更难评价防御性模式的稳健性。鉴于防御模式,需要进一步利用高效的对抗性攻击,而减少计算负担,降低稳健的准确性。因此,我们提议为自动对抗性攻击优化设计采用多目标的计量算法,实现对接近最佳的对抗性攻击的自动搜索。首先,由于自动对抗性攻击性攻击优化设计的一般数学模型的构建,其搜索空间不仅包括攻击者的行动、规模、推力和损失功能,而且还包括多重对抗性攻击的关联性攻击。此外,我们将NSGA-II和本地搜索结合起来,以解决最优化问题。最后,为了降低搜索期间对近最佳的对抗性对防御性对防御性攻击的自动搜索成本,我们提出了更普遍的自动的对抗性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性