Designed for distributed storage systems, locally repairable codes (LRCs) can reduce the repair bandwidth and disk I/O complexity during the storage node repair process. A code with locality $(r,\delta)$ (also called an $(r,\delta)$-LRC) can repair up to $\delta-1$ symbols in a codeword simultaneously by accessing at most other $r$ symbols in the codeword. An optimal $(r,\delta)$-LRC is a code that achieves the Singleton-type bound on $r,\delta$, the code length, the code size and the minimum distance. Constructing optimal LRCs receives wide attention recently. In this paper, we give a new method to analyze the $(r,\delta)$-locality of cyclic codes. Via the characterization of locality, we obtain several classes of optimal $(r,\delta)$-LRCs. When the minimum distance $d$ is greater than or equal to $2\delta+1$, we present a class of $q$-ary optimal $(r,\delta)$-LRCs whose code lengths are unbounded. In contrast, the existing works only show the existence of $q$-ary optimal $(r,\delta)$-LRCs of code lengths $O(q^{1+\frac{\delta}{2}})$. When $d$ is in between $\delta$ and $2\delta$, we present five classes of optimal $(r,\delta)$-LRCs whose lengths are unbounded. Compared with the existing constructions of optimal $(r,\delta)$-LRCs with unbounded code lengths, three classes of our LRCs do not have the restriction of the distance $d\leq q$. In other words, our optimal $(r,\delta)$-LRCs can have large distance over a relatively small field, which are desired by practical requirement of high repair capability and low computation cost. Besides, for the case of the minimal value $2$ of $\delta$, we find out all the optimal cyclic $(r,2)$-LRCs of prime power lengths.
翻译:针对分布式存储系统,局部可修码(LRCs)可以在存储节点修复过程中减少修复带宽和磁盘I/O复杂度。具有局部性$(r,\delta)$(也称为$(r,\delta)$-LRC)的码可以通过访问最多其他$r$个码字中的符号,在修复过程中同时修复多达$\delta-1$个符号。最优$(r,\delta)$-LRC是一种达到Singleton-type界的编码,该界限定了$r,\delta$、码长、码大小和最小距离。构建最优LRC受到广泛关注。在本文中,我们给出了一种分析循环码$(r,\delta)$-局部性的新方法。通过局部性的表征,我们获得了几类最优$(r,\delta)$-LRC。当最小距离$d$大于或等于$2\delta+1$时,我们提出了一类无限长度$q$进制最优$(r,\delta)$-LRC。相比之下,现有工作只能展示长度为$O(q^{1+\frac{\delta}{2}})$的最优$(r,\delta)$-LRC的存在。当$d$在$\delta$和$2\delta$之间时,我们提出了五类无限长度最优$(r,\delta)$-LRC。与已有无限长度最优$(r,\delta)$-LRC的构造相比,我们的三类LRC没有距离$d\leq q$的限制。换句话说,我们的最优$(r,\delta)$-LRC可以在相对较小的域上具有较大的距离,这符合高修复能力和低计算成本的实际需求。此外,在$\delta=2$的最小值的情况下,我们找到了所有素幂长度的循环最优$(r,2)$-LRC。