Time-homogeneous Markov chains are often used as disease progression models in studies of cost-effectiveness and optimal decision-making. Maximum likelihood estimation of these models can be challenging when data are collected at a time interval longer than the model's transition cycle length. For example, it may be necessary to estimate a monthly transition model from data collected annually. The likelihood for a time-homogeneous Markov chain with transition matrix $\mathbf{P}$ and data observed at intervals of $T$ cycles is a function of $\mathbf{P}^T.$ The maximum likelihood estimate of $\mathbf{P}^T$ is easily obtained from the data. The $T$th root of this estimate would then be a maximum likelihood estimate for $\mathbf{P}.$ However, the $T$th root of $\mathbf{P}^T$ is not necessarily a valid transition matrix. Maximum likelihood estimation of $\mathbf{P}$ is a constrained optimization problem when a valid root is unavailable. The optimization problem is not convex. Local convergence is explored in several case studies through graphical representations of a grid search. The example cases use disease progression data from the literature as well as synthetic data. The global maximum likelihood estimate is increasingly difficult to locate as the number of cycles or the number of states increases. What seems like a straightforward estimation problem can be challenging even for relatively simple models. Researchers should consider alternatives to likelihood maximization or alternative models.
翻译:在成本-效益和最佳决策研究中,经常将时间-均匀的Markov链条用作疾病递增模型。当数据收集的时间间隔比模型的过渡周期长度长时,这些模型的最大可能性估计可能具有挑战性。例如,可能需要从每年收集的数据中估算月度过渡模型。但是,使用时间-均匀的Markov链条与过渡矩阵($\mathbf{P}$)的可能性和在美元周期间隔中观测的数据不一定是有效的过渡矩阵。如果无法从数据中轻易获得 $\mathbf{P ⁇ T$的最大可能性估计数,这些模型的最大可能性估计可能具有挑战性。这一估计数的美元根部将是美元\mathbf{P}。因此,可能需要从每年收集的数据中估算月度过渡模型的最大可能性。 美元的第Throot 根根($mathbff{P}}) 和以美元周期间隔中观测的数据是有效的过渡矩阵($mathbf{P}美元),那么在有效根基底不可用时,那么最有可能估计是限制的优化的优化的。最有可能的模型不是同级的。 。 最优化的模型, 地方的模型不是同级模型,而是同级的同级的同级的。在搜索中越来越难的模型。在搜索的模型中,在搜索中,在搜索中,在搜索中,在搜索中越入选取。