Longest Increasing Subsequence (LIS) is a fundamental statistic of a sequence, and has been studied for decades. While the LIS of a sequence of length $n$ can be computed exactly in time $O(n\log n)$, the complexity of estimating the (length of the) LIS in sublinear time, especially when LIS $\ll n$, is still open. We show that for any integer $n$ and any $\lambda = o(1)$, there exists a (randomized) non-adaptive algorithm that, given a sequence of length $n$ with LIS $\ge \lambda n$, approximates the LIS up to a factor of $1/\lambda^{o(1)}$ in $n^{o(1)} / \lambda$ time. Our algorithm improves upon prior work substantially in terms of both approximation and run-time: (i) we provide the first sub-polynomial approximation for LIS in sub-linear time; and (ii) our run-time complexity essentially matches the trivial sample complexity lower bound of $\Omega(1/\lambda)$, which is required to obtain any non-trivial approximation of the LIS. As part of our solution, we develop two novel ideas which may be of independent interest: First, we define a new Genuine-LIS problem, where each sequence element may either be genuine or corrupted. In this model, the user receives unrestricted access to actual sequence, but does not know apriori which elements are genuine. The goal is to estimate the LIS using genuine elements only, with the minimal number of "genuiness tests". The second idea, Precision Forest, enables accurate estimations for composition of general functions from "coarse" (sub-)estimates. Precision Forest essentially generalizes classical precision sampling, which works only for summations. As a central tool, the Precision Forest is initially pre-processed on a set of samples, which thereafter is repeatedly reused by multiple sub-parts of the algorithm, improving their amortized complexity.


翻译:长期递增子序列( LIS) 是一个序列的基本统计, 并且已经研究了几十年。 虽然一个长度为$n美元序列的LIS 可以精确地按时间计算 $O( n\ log n) 美元, 在亚线时间估计 LIS ( lis) 的长度( lis), 特别是当 LIS $\ll n 美元, 仍然开放时, 我们的算法在任何整数美元和任何美元=lambda = o(1) 美元时, 存在一个( 随机化的) 不适应的算法。 鉴于一个长度为美元( 随机化的) 美元序列, 直线性 美元( 美元/ lambda n) 的序列可以精确地计算 美元, 在亚线下时间序列里程中, 直线性( 直线性) 直线性( 直线性) 直线性( 直线性) 直线性( 直线性) 直线性( 直线性) 直线性( 直线性) 直线性( 直线性) 直线( 直线性) 直线性( 直线性) 直线性( 直线性) 直线性( 直线性) 直线性) 直线性( 直线性) 直线性) 直线性) 函数( 直线性) 直线性) 函数( 等( 直 直 直 直 直 直 直 直 直 直 等( 等) ( 直 直 直 ) ( 直 直 ) 直 直 直 直 直 直 直) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 直 直 ) ( ) ) ( ) ( ) ( ) ) ( ) ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员