Ejection fraction (EF) is a key indicator of cardiac function, allowing identification of patients prone to heart dysfunctions such as heart failure. EF is estimated from cardiac ultrasound videos known as echocardiograms (echo) by manually tracing the left ventricle and estimating its volume on certain frames. These estimations exhibit high inter-observer variability due to the manual process and varying video quality. Such sources of inaccuracy and the need for rapid assessment necessitate reliable and explainable machine learning techniques. In this work, we introduce EchoGNN, a model based on graph neural networks (GNNs) to estimate EF from echo videos. Our model first infers a latent echo-graph from the frames of one or multiple echo cine series. It then estimates weights over nodes and edges of this graph, indicating the importance of individual frames that aid EF estimation. A GNN regressor uses this weighted graph to predict EF. We show, qualitatively and quantitatively, that the learned graph weights provide explainability through identification of critical frames for EF estimation, which can be used to determine when human intervention is required. On EchoNet-Dynamic public EF dataset, EchoGNN achieves EF prediction performance that is on par with state of the art and provides explainability, which is crucial given the high inter-observer variability inherent in this task.
翻译:弹道分数(EF)是心脏功能的一个关键指标,可以辨别易发生心脏功能障碍的病人,例如心脏衰竭。EF通过人工跟踪左心室并估计其在某些框架的体积,通过手动跟踪左心室和估计其体积,对EF进行估计。由于手动过程和视频质量不同,这些估计显示观测器之间的重量变化很大。这种不准确的来源和快速评估的需要需要可靠和可解释的机器学习技术。在这项工作中,我们引入了EGGNNN,这是一个基于图形神经网络的模型,用来从回声视频中估计EF。我们的模型首先从一个或多个回声心室系列的框中推断出潜在的回声图。然后对这个图的节点和边缘进行了估计,表明援助EFF估计的单个框架的重要性。GNNNE回归器使用这一加权图表来预测EF。我们从质量和数量上显示,通过确定EF估计的关键框架来解释所学的图形权重。当人类的内置预测需要时,CEF的内置的内存数据是关键性变式,而CEFS-NFSDR在现实中提供了关键的内变数。