The challenge to fully exploit the potential of existing and upcoming scientific instruments like large single-dish radio telescopes is to process the collected massive data effectively and efficiently. As a "quasi 2D stencil computation" with the "Moore neighborhood pattern," gridding is the most computationally intensive step in data reduction pipeline for radio astronomy studies, enabling astronomers to create correct sky images for further analysis. However, the existing gridding frameworks can either only run on multi-core CPU architecture or do not support high-concurrency, multi-channel data gridding. Their performance is then limited, and there are emerging needs for innovative gridding frameworks to process data from large single-dish radio telescopes like the Five-hundred-meter Aperture Spherical Telescope (FAST). To address those challenges, we developed a High Efficient Gridding framework, HEGrid, by overcoming the above limitations. Specifically, we propose and construct the gridding pipeline in heterogeneous computing environments and achieve multi-pipeline concurrency for high performance multi-channel processing. Furthermore, we propose pipeline-based co-optimization to alleviate the potential negative performance impact of possible intra- and inter-pipeline low computation and I/O utilization, including component share-based redundancy elimination, thread-level data reuse and overlapping I/O and computation. Our experiments are based on both simulated datasets and actual FAST observational datasets. The results show that HEGrid outperforms other state-of-the-art gridding frameworks by up to 5.5x and has robust hardware portability, including AMD Radeon Instinct GPU and NVIDIA GPU.


翻译:充分利用现有和即将到来的科学仪器的潜力,如大型单式无线电望远镜,所面临的挑战是有效和高效地处理所收集的大量数据。作为“模拟2D高级计算”的“quasi 2D stenciil 计算”和“模拟周边模式”的“模拟二D 快速计算 ”, 电网是用于射电天文学研究的数据减少管道中最计算密集的步骤,使天文学家能够创建正确的天空图像以供进一步分析。然而,现有的电网框架要么只能运行在多核心CPU结构上运行,要么不支持高调、多通道数据网格。然后,其性能有限,而且正在出现需要创新的电网格框架来处理大型单式无线电望远镜的数据。为了应对这些挑战,我们开发了一个高效的网格框架,使天文学家能够通过克服上述限制,在混合计算环境中建立电网格管道,为高性能多频道处理工作提供多管道调调调调调调调调调。此外,我们提议通过基于管道的双基联式网络的网络化联合网络化处理,从大型单式无线电观测仪式观测仪式观测仪,例如五米径A级光机望远镜望远镜望远镜望远镜望远镜望远镜,以及机化中的潜在O级数据再利用中,包括我们内部和机变压数据再利用的软化,以及基于的机变压的机变压和机极的机变压的机极数据计算,可以显示。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员