Speech Neuroprostheses have the potential to enable communication for people with dysarthria or anarthria. Recent advances have demonstrated high-quality text decoding and speech synthesis from electrocorticographic grids placed on the cortical surface. Here, we investigate a less invasive measurement modality in three participants, namely stereotactic EEG (sEEG) that provides sparse sampling from multiple brain regions, including subcortical regions. To evaluate whether sEEG can also be used to synthesize high-quality audio from neural recordings, we employ a recurrent encoder-decoder model based on modern deep learning methods. We find that speech can indeed be reconstructed with correlations up to 0.8 from these minimally invasive recordings, despite limited amounts of training data.
翻译:语音神经质谱仪具有为患有抑郁症或肛门症的人提供交流的潜力。最近的进展表明,在皮层表面安装的电动电动电网中,文本解码和语音合成质量很高。在这里,我们调查了三种参与者中一种侵扰程度较低的测量模式,即立体式EEEG(sEEG),它从多个脑区域,包括亚皮层区域提供稀少的取样。为了评估是否也可以利用SEEG合成神经录音中的高质量音频,我们采用了一种基于现代深层学习方法的经常性编码解码脱码器-解码器模型。我们发现,尽管培训数据数量有限,但确实可以在这些最低侵入性记录中进行高达0.8的关联性重建。