We prove super-polynomial lower bounds on the size of propositional proof systems operating with constant-depth algebraic circuits over fields of zero characteristic. Specifically, we show that the subset-sum variant $\sum_{i,j,k,\ell\in[n]} z_{ijk\ell}x_ix_j x_k x_\ell - \beta=0$, for Boolean variables, does not have polynomial-size IPS refutations where the refutations are multilinear and written as constant-depth circuits. Andrews and Forbes (STOC'22) established recently a constant-depth IPS lower bound, but their hard instance does not have itself small constant-depth circuits, while our instance is computable already with small depth-2 circuits. Our argument relies on extending the recent breakthrough lower bounds against constant-depth algebraic circuits by Limaye, Srinivasan and Tavenas (FOCS'21) to the functional lower bound framework of Forbes, Shpilka, Tzameret and Wigderson (ToC'21), and may be of independent interest. Specifically, we construct a polynomial $f$ computable with small-size constant-depth circuits, such that the multilinear polynomial computing $1/f$ over Boolean values and its appropriate set-multilinear projection are hard for constant-depth circuits.
翻译:具体地说,我们证明,对于布尔兰变量来说,用连续深度代数电路运行的参数校验系统大小的超极下界值。具体地说,我们显示子数和子数总变数 $\sum ⁇ i,j,k,hell\in[n] z ⁇ ijk\ell}x_ix_ix_jxx_k_kx ⁇ ell -\beta=0$,对于布尔兰变量来说,我们的论点并不具有多数值的IMAye、Srinivasan和Tavenas(FOCS'21) 的多数值,其中的反差是多线性深度电路。Andrews和Forbes(STOC'22)最近建立了一个持续深度IPS,但是它们的硬数值并不具有小的常数直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的电路路路路路。