Item response theory (IRT) models are widely used to obtain interpretable inference when analyzing data from questionnaires, scaling binary responses into continuous constructs. Typically, these models rely on a normality assumption for the latent trait characterizing individuals in the population under study. However, this assumption can be unrealistic and lead to biased results. We relax the normality assumption by considering a flexible Dirichlet Process mixture model as a nonparametric prior on the distribution of the individual latent traits. Although this approach has been considered in the literature before, there is a lack of comprehensive studies of such models or general software tools. To fill this gap, we show how the NIMBLE framework for hierarchical statistical modeling enables the use of flexible priors on the latent trait distribution, specifically illustrating the use of Dirichlet Process mixtures in two-parameter logistic (2PL) IRT models. We study how different sets of constraints can lead to model identifiability and give guidance on eliciting prior distributions. Using both simulated and real-world data, we conduct an in-depth study of Markov chain Monte Carlo posterior sampling efficiency for several sampling strategies. We conclude that having access to semiparametric models can be broadly useful, as it allows inference on the entire underlying ability distribution and its functionals, with NIMBLE being a flexible framework for estimation of such models.


翻译:在分析问卷数据时,广泛使用项目反应理论(IRT)模型来获取可解释的推断,将二进制反应缩小到连续结构中。通常,这些模型依赖对所研究人群中个人潜在特征特征的常态假设,但这一假设不现实,可能导致有偏差的结果。我们放松正常性假设,将灵活的迪里赫莱特进程混合物模型视为在分配个别潜在特征之前的非参数。虽然以前在文献中曾考虑过这一方法,但对此类模型或一般软件工具缺乏全面研究。为填补这一空白,我们展示了等级统计模型的NNNNBLB框架如何能够在潜在特征分布上使用灵活的前科,具体地说明Drichlet进程混合物在双参数后勤(2PL)IRT模型中的使用情况。我们研究不同的制约因素如何导致模型的可识别性,并就先前的分布提供指导。我们利用模拟和现实世界数据,对Markov链 Monte Car Festior 取样效率进行深入的研究。为若干取样战略提供了一种实用性的能力。我们得出结论认为,功能性框架的利用这种半参数框架可以作为基础,从而推估测测测测。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
基于深度学习的图像分析技术,116页ppt
专知会员服务
55+阅读 · 2020年7月17日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
0+阅读 · 2021年3月21日
Arxiv
0+阅读 · 2021年3月21日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员