There is a wide range of applications where the local extrema of a function are the key quantity of interest. However, there is surprisingly little work on methods to infer local extrema with uncertainty quantification in the presence of noise. By viewing the function as an infinite-dimensional nuisance parameter, a semiparametric formulation of this problem poses daunting challenges, both methodologically and theoretically, as (i) the number of local extrema may be unknown, and (ii) the induced shape constraints associated with local extrema are highly irregular. In this article, we address these challenges by suggesting an encompassing strategy that eliminates the need to specify the number of local extrema, which leads to a remarkably simple, fast semiparametric Bayesian approach for inference on local extrema. We provide closed-form characterization of the posterior distribution and study its large sample behaviors under this encompassing regime. We show a multi-modal Bernstein-von Mises phenomenon in which the posterior measure converges to a mixture of Gaussians with the number of components matching the underlying truth, leading to posterior exploration that accounts for multi-modality. We illustrate the method through simulations and a real data application to event-related potential analysis.


翻译:在一系列应用中,功能的局部外形是关键关注量的关键,但令人惊讶的是,对于在噪音存在的情况下用不确定性量化来推断局部外形的方法,几乎没有什么工作可做。将局部外形作为无限维度扰动参数来看待,从方法上和理论上来说,这一问题的半对称配方都带来了巨大的挑战,因为(一) 本地外形的数量可能未知,以及(二) 与本地外形有关的诱发形状限制非常不规则。在本条中,我们提出一个全面战略来应对这些挑战,消除确定本地外形数量的必要性,从而导致对本地外形进行非常简单、快速半半半半半准巴里萨法的推断方法。我们提供外形分布的封闭式定性,并研究其在这个包罗列式制度下的大量抽样行为。我们展示了一种多模式的伯恩斯坦-冯米塞斯现象,其后端计量方法与高斯人的组合,其组成部分与基本真理相匹配的数量相匹配,从而导致对多式模型进行真实性分析。我们展示了通过模拟方法进行真实性分析的可能性。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
已删除
将门创投
4+阅读 · 2019年8月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年8月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员