In this paper we develop a functorial language of probabilistic morphisms and apply it to some basic problems in Bayesian nonparametrics. First we extend and unify the Kleisli category of probabilistic morphisms proposed by Lawvere and Giry with the category of statistical models proposed by Chentsov and Morse-Sacksteder. Then we introduce the notion of a Bayesian statistical model that formalizes the notion of a parameter space with a given prior distribution in Bayesian statistics. {We revisit the existence of a posterior distribution, using probabilistic morphisms}. In particular, we give an explicit formula for posterior distributions of the Bayesian statistical model, assuming that the underlying parameter space is a Souslin space and the sample space is a subset in a complete connected finite dimensional Riemannian manifold. Then we give a new proof of the existence of Dirichlet measures over any measurable space using a functorial property of the Dirichlet map constructed by Sethuraman.
翻译:在本文中,我们开发了一种概率形态学的比方语言,并将其应用于巴伊西亚非参数学的一些基本问题。 首先,我们扩展并统一了劳维尔和吉里提出的克莱斯利(Kleisli)类概率形态学类别与Chentsov和Morse-Sackstender提出的统计模型类别。 然后,我们引入了一种巴伊西亚统计模型的概念,该模型将参数空间概念正式化,并预先在巴伊西亚统计中进行了特定分布。 {我们用概率形态学 来重新审视后方分布。 特别是,我们给出了一种明确公式,用于巴伊西亚统计模型的后方分布, 假设基本参数空间是一个苏斯林空间, 样本空间是完全相连的有限空间里伊曼方程中的子。 然后,我们用塞特拉曼绘制的迪里赫特地图的复古属性, 提供了一个新的证据证明在任何可测量的空间上存在Drichlet措施。