Multiple-subject network data are fast emerging in recent years, where a separate connectivity matrix is measured over a common set of nodes for each individual subject, along with subject covariates information. In this article, we propose a new generalized matrix response regression model, where the observed networks are treated as matrix-valued responses and the subject covariates as predictors. The new model characterizes the population-level connectivity pattern through a low-rank intercept matrix, and the effect of subject covariates through a sparse slope tensor. We develop an efficient alternating gradient descent algorithm for parameter estimation, and establish the non-asymptotic error bound for the actual estimator from the algorithm, which quantifies the interplay between the computational and statistical errors. We further show the strong consistency for graph community recovery, as well as the edge selection consistency. We demonstrate the efficacy of our method through simulations and two brain connectivity studies.


翻译:近年来,多主题网络数据正在迅速出现,对每个主题的一组共同节点以及主题共变信息分别测量了一个单独的连接矩阵。在本条中,我们提出了一个新的通用矩阵响应回归模型,将观测到的网络视为矩阵估价反应,并将主题共变作为预测数据。新模型通过低级别拦截矩阵和通过稀疏斜斜坡拉索的主体共变效应,将人口层面连接模式定性为人口层面连接模式。我们开发了一个高效的交替梯度下行算法,用于估算参数,并为算法中的实际估计者确定非默认错误,该算法对计算错误和统计错误之间的相互作用进行量化。我们进一步显示了图表社区恢复的强烈一致性,以及边缘选择的一致性。我们通过模拟和两个大脑连通性研究,展示了我们方法的功效。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员