Autonomous driving has attracted great attention from both academics and industries. To realise autonomous driving, Deep Imitation Learning (DIL) is treated as one of the most promising solutions, because it improves autonomous driving systems by automatically learning a complex mapping from human driving data, compared to manually designing the driving policy. However, existing DIL methods cannot generalise well across domains, that is, a network trained on the data of source domain gives rise to poor generalisation on the data of target domain. In the present study, we propose a novel brain-inspired deep imitation method that builds on the evidence from human brain functions, to improve the generalisation ability of deep neural networks so that autonomous driving systems can perform well in various scenarios. Specifically, humans have a strong generalisation ability which is beneficial from the structural and functional asymmetry of the two sides of the brain. Here, we design dual Neural Circuit Policy (NCP) architectures in deep neural networks based on the asymmetry of human neural networks. Experimental results demonstrate that our brain-inspired method outperforms existing methods regarding generalisation when dealing with unseen data. Our source codes and pretrained models are available at https://github.com/Intenzo21/Brain-Inspired-Deep-Imitation-Learning-for-Autonomous-Driving-Systems}{https://github.com/Intenzo21/Brain-Inspired-Deep-Imitation-Learning-for-Autonomous-Driving-Systems.
翻译:自主驾驶引起了学术界和产业界的极大关注。为了实现自主驾驶,深模仿学习(DIL)被视为最有希望的解决方案之一,因为它通过自动学习人驾驶数据与手动设计驱动政策相比的复杂绘图,改进了自主驾驶系统。然而,现有的DIL方法无法在各个领域广泛推广,也就是说,经过源域数据培训的网络导致对目标域数据的一般化不力。在本研究中,我们提议了一种以人类大脑功能证据为基础的新颖大脑启发深度模仿方法,以提高深层神经网络的普及能力,从而使自主驾驶系统在各种情景中运作良好。具体地说,人类具有很强的集成能力,这得益于大脑两侧的结构和功能的不对称。在这里,我们根据人类神经网络的不对称,在深层神经网络中设计双重神经电路政策架构。实验结果表明,我们的大脑激励-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-自-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直-直-直觉-直-直-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直觉-直