Black-box risk scoring models permeate our lives, yet are typically proprietary or opaque. We propose a transparent model distillation approach to audit such models. Model distillation was first introduced to transfer knowledge from a large, complex teacher model to a faster, simpler student model without significant loss in prediction accuracy. To this we add a third criterion - transparency. To gain insight into black-box models, we treat them as teachers, training transparent student models to mimic the risk scores assigned by the teacher. Moreover, we use side information in the form of the actual outcomes the teacher scoring model was intended to predict in the first place. By training a second transparent model on the outcomes, we can compare the two models to each other. When comparing models trained on risk scores to models trained on outcomes, we show that it is necessary to calibrate the risk-scoring model's predictions to remove distortion that may have been added to the black-box risk-scoring model during or after its training process. We also show how to compute confidence intervals for the particular class of transparent student models we use - tree-based additive models with pairwise interactions (GA2Ms) - to support comparison of the two transparent models. We demonstrate the methods on four public datasets: COMPAS, Lending Club, Stop-and-Frisk, and Chicago Police.


翻译:黑匣子风险评分模型贯穿我们的生活,但通常都是专有的或不透明。 我们提出透明的模型蒸馏方法来审计这些模型。 模型蒸馏首先将知识从大型、 复杂的教师模型转移到更快捷、更简单的学生模型, 在预测准确性方面没有重大损失。 我们为此添加了第三个标准 - 透明度。 为了深入了解黑盒模型, 我们把它们作为教师对待, 培训透明的学生模型来模仿教师分配的风险评分。 此外, 我们使用以实际结果为形式的侧面信息, 教师评分模型本来打算首先预测的。 通过培训第二个透明模型, 我们可以将两个模型相互比较。 在比较风险评分模型和结果模型时, 我们表明有必要校准风险计分模型的预测, 以消除黑盒风险计分模型在培训过程中或培训之后可能添加到的风险计分数模型中的扭曲。 我们还展示了如何为特定类别的透明学生模型 — 树基补分模型与配对式互动( GA2MS- Chica- ) 来比较两个透明的数据。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
Arxiv
32+阅读 · 2020年3月23日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
Learning Discriminative Model Prediction for Tracking
Knowledge Flow: Improve Upon Your Teachers
Arxiv
5+阅读 · 2019年4月11日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关VIP内容
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
已删除
Arxiv
32+阅读 · 2020年3月23日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
Learning Discriminative Model Prediction for Tracking
Knowledge Flow: Improve Upon Your Teachers
Arxiv
5+阅读 · 2019年4月11日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2018年1月29日
Top
微信扫码咨询专知VIP会员