In this note, we construct an algorithm that, on input of a description of a structurally stable planar dynamical flow $f$ defined on the closed unit disk, outputs the exact number of the (hyperbolic) equilibrium points and their locations with arbitrary accuracy. By arbitrary accuracy it is meant that any accuracy required by the input can be achieved. The algorithm can be further extended to a root-finding algorithm that computes the exact number of zeros as well the location of each zero of a continuously differentiable function $f$ defined on the closed unit ball of $\mathbb{R}^{d}$, provided that the Jacobian of $f$ is invertible at each zero of $f$; moreover, the computation is uniform in $f$.


翻译:在本说明中,我们构建了一种算法,根据对封闭单元盘上界定的结构稳定的平面动态流量描述的输入,可以任意精确地输出(双曲)平衡点的确切数目及其位置,通过武断的准确性,这意味着输入所需的任何准确性都可以实现。这一算法可以进一步扩展为根算算法,计算零的确切数以及封闭单元球上固定的连续差异函数零的每个位置,即$\mathbb{R ⁇ d}美元,只要每0美元中每0美元就无法忽略美元;此外,计算法以美元统一。

0
下载
关闭预览

相关内容

专知会员服务
86+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
0+阅读 · 2021年11月22日
VIP会员
相关VIP内容
专知会员服务
86+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员