Canonical quantum correlation observables can be approximated by classical molecular dynamics. In the case of low temperature the ab initio molecular dynamics potential energy is based on the ground state electron eigenvalue problem and the accuracy has been proven to be $\mathcal{O}(M^{-1})$, provided the first electron eigenvalue gap is sufficiently large compared to the given temperature and $M$ is the ratio of nuclei and electron masses. For higher temperature eigenvalues corresponding to excited electron states are required to obtain $\mathcal{O}(M^{-1})$ accuracy and the derivations assume that all electron eigenvalues are separated, which for instance excludes conical intersections. This work studies a mean-field molecular dynamics approximation where the mean-field Hamiltonian for the nuclei is the partial trace $h:=\mathrm{Tr}(H e^{-\beta H})/\mathrm{Tr}(e^{-\beta H})$ with respect to the electron degrees of freedom and $H$ is the Weyl symbol corresponding to a quantum many body Hamiltonian $\widehat{H}$. It is proved that the mean-field molecular dynamics approximates canonical quantum correlation observables with accuracy $\mathcal{O}(M^{-1}+ t\epsilon^2)$, for correlation time $t$ where $\epsilon^2$ is related to the variance of mean value approximation $h$. The proof of this estimate does not rely on diagonalizing the electron operator and consequently coinciding electron eigenvalues are allowed. Furthermore, the proof derives a precise asymptotic representation of the Weyl symbol of the Gibbs density operator using a path integral formulation.


翻译:古典分子动态可以近似于古典分子量关系。 在低温的情况下, 初始分子动态潜在能量以地面状态电子值问题为基础, 准确度被证明为$\ mathcal{O}( M ⁇ \\ -1} 美元, 但前提是第一个电子量值与给定温度相比差异足够大, 美元是核和电子质量的比例。 对于与兴奋型电子状态相对应的更高温度乙基值而言, 需要获得 $\ macal{ O} (M ⁇ -1}) 美元 分子动态潜能值。 精确度和衍生假设所有电子量值都是分开的, 例如排除了锥体交叉点 。 这项工作研究一种平均水平分子动态, 中位汉密尔顿值与给定值值之间的部分微量值 : mathr{ {Tr} (H\\\\\\\\\\\\\ betqr) 与兴奋性电子量值的数值, 当量值值的比值值值值值值值 和正值的正值的硬值 直值 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员