For a fixed integer, the $k$-Colouring problem is to decide if the vertices of a graph can be coloured with at most $k$ colours for an integer $k$, such that no two adjacent vertices are coloured alike. A graph $G$ is $H$-free if $G$ does not contain $H$ as an induced subgraph. It is known that for all $k\geq 3$, the $k$-Colouring problem is NP-complete for $H$-free graphs if $H$ contains an induced claw or cycle. The case where $H$ contains a cycle follows from the known result that the problem is NP-complete even for graphs of arbitrarily large fixed girth. We examine to what extent the situation may change if in addition the input graph has bounded diameter.
翻译:对于固定整数, $k$- 彩色问题在于决定一个图表的顶端是否可以以最多K美元彩色显示整数美元, 因而没有两个相邻的顶端的顶端彩色相同。 如果$G美元没有作为诱导的子图包含$H美元, 则G$是不含$H美元的。 众所周知, 对于所有 $G 3 美元, 如果$H 包含一个诱导的爪子或周期, $K$ 彩色的顶端的顶端是不含$H$的NP- 问题。 如果$H 包含一个周期, 以已知的结果为根据, 即便对任意大固定底座的图形来说, 问题也是NP- 完整的。 我们检查, 如果输入图的直径被绑定, 情况会有多大变化 。