We study the composition style in deep image matting, a notion that characterizes a data generation flow on how to exploit limited foregrounds and random backgrounds to form a training dataset. Prior art executes this flow in a completely random manner by simply going through the foreground pool or by optionally combining two foregrounds before foreground-background composition. In this work, we first show that naive foreground combination can be problematic and therefore derive an alternative formulation to reasonably combine foregrounds. Our second contribution is an observation that matting performance can benefit from a certain occurrence frequency of combined foregrounds and their associated source foregrounds during training. Inspired by this, we introduce a novel composition style that binds the source and combined foregrounds in a definite triplet. In addition, we also find that different orders of foreground combination lead to different foreground patterns, which further inspires a quadruplet-based composition style. Results under controlled experiments on four matting baselines show that our composition styles outperform existing ones and invite consistent performance improvement on both composited and real-world datasets. Code is available at: https://github.com/coconuthust/composition_styles
翻译:我们研究深层图像交配的构成风格,这个概念是关于如何利用有限的前景和随机背景来形成培训数据集的数据生成流的特征。 以前的艺术以完全随机的方式通过光穿过前景池或者在地表- 地面构成之前选择地将两个前景层组合在一起, 进行这种流动。 在这项工作中, 我们首先发现天真的前景组合可能会产生问题, 从而得出合理结合前景的替代配方。 我们的第二个贡献是观察到, 在培训期间, 组合前景及其相关来源的源地的某个发生频率, 可使交配性受益。 受此启发, 我们引入了一种新颖的构成风格, 将源与在明确的三重状态下合并在一起。 此外, 我们还发现, 不同层次的地表组合导致不同的前景模式, 这进一步激发了基于四重立的构成风格。 四个交配基准的受控实验结果显示, 我们的构成方式优于现有的频率, 并且邀请在合成和真实世界数据集/ 格式上进行一致的性改进。 代码可以使用 : http:// comsqusssslable