In this work, we address time-series forecasting as a computer vision task. We capture input data as an image and train a model to produce the subsequent image. This approach results in predicting distributions as opposed to pointwise values. To assess the robustness and quality of our approach, we examine various datasets and multiple evaluation metrics. Our experiments show that our forecasting tool is effective for cyclic data but somewhat less for irregular data such as stock prices. Importantly, when using image-based evaluation metrics, we find our method to outperform various baselines, including ARIMA, and a numerical variation of our deep learning approach.
翻译:在这项工作中,我们把时间序列预测作为计算机的愿景任务处理。我们把输入数据作为图像收集,并训练一个模型来制作随后的图像。这个方法的结果是预测分布,而不是预测点值。为了评估我们的方法的稳健性和质量,我们检查了各种数据集和多重评价指标。我们的实验表明,我们的预测工具对循环数据有效,但对股票价格等非正常数据则略为少一些。重要的是,在使用基于图像的评价指标时,我们发现我们的方法可以超越各种基线,包括ARIMA,以及我们深层次学习方法的数值变化。