The problem of an optimal mapping between Hilbert spaces $IN$ and $OUT$, based on a series of density matrix mapping measurements $\rho^{(l)} \to \varrho^{(l)}$, $l=1\dots M$, is formulated as an optimization problem maximizing the total fidelity $\mathcal{F}=\sum_{l=1}^{M} \omega^{(l)} F\left(\varrho^{(l)},\sum_s B_s \rho^{(l)} B^{\dagger}_s\right)$ subject to probability preservation constraints on Kraus operators $B_s$. For $F(\varrho,\sigma)$ in the form that total fidelity can be represented as a quadratic form with superoperator $\mathcal{F}=\sum_s\left\langle B_s\middle|S\middle| B_s \right\rangle$ (either exactly or as an approximation) an iterative algorithm is developed. The work introduces two important generalizations of unitary learning: 1. $IN$/$OUT$ states are represented as density matrices. 2. The mapping itself is formulated as a mixed unitary quantum channel $A^{OUT}=\sum_s |w_s|^2 \mathcal{U}_s A^{IN} \mathcal{U}_s^{\dagger}$ (no general quantum channel yet). This marks a crucial advancement from the commonly studied unitary mapping of pure states $\phi_l=\mathcal{U} \psi_l$ to a quantum channel, what allows us to distinguish probabilistic mixture of states and their superposition. An application of the approach is demonstrated on unitary learning of density matrix mapping $\varrho^{(l)}=\mathcal{U} \rho^{(l)} \mathcal{U}^{\dagger}$, in this case a quadratic on $\mathcal{U}$ fidelity can be constructed by considering $\sqrt{\rho^{(l)}} \to \sqrt{\varrho^{(l)}}$ mapping, and on a quantum channel, where quadratic on $B_s$ fidelity is an approximation -- a quantum channel is then obtained as a hierarchy of unitary mappings, a mixed unitary channel. The approach can be applied to studying quantum inverse problems, variational quantum algorithms, quantum tomography, and more.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月9日
Arxiv
0+阅读 · 1月3日
Arxiv
0+阅读 · 2024年12月30日
Arxiv
0+阅读 · 2024年12月27日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 1月9日
Arxiv
0+阅读 · 1月3日
Arxiv
0+阅读 · 2024年12月30日
Arxiv
0+阅读 · 2024年12月27日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员