Zigzag persistence is a powerful extension of the standard persistence which allows deletions of simplices besides insertions. However, computing zigzag persistence usually takes considerably more time than the standard persistence. We propose an algorithm called FastZigzag which narrows this efficiency gap. Our main result is that an input simplex-wise zigzag filtration can be converted to a cell-wise non-zigzag filtration of a $\Delta$-complex with the same length, where the cells are copies of the input simplices. This conversion step in FastZigzag incurs very little cost. Furthermore, the barcode of the original filtration can be easily read from the barcode of the new cell-wise filtration because the conversion embodies a series of diamond switches known in topological data analysis. This seemingly simple observation opens up the vast possibilities for improving the computation of zigzag persistence because any efficient algorithm/software for standard persistence can now be applied to computing zigzag persistence. Our experiment shows that this indeed achieves substantial performance gain over the existing state-of-the-art softwares.
翻译:Zigzag 持久性是标准持久性的强大延伸,它允许除插入外删除单项。 然而, 计算 zigzag 持久性通常比标准持久性花费的时间要长得多。 我们建议了一个名为 FastZigzag 的算法, 以缩小效率差距。 我们的主要结果是, 输入简单x- yigzag 过滤法可以转换成细胞学数据分析中已知的一系列钻石开关。 这种看似简单的观察为改进zigzag 持久性计算提供了巨大的可能性, 因为任何用于标准持久性的有效算法/软件现在都可以用于计算 zigzag 持久性。 我们的实验表明, 最初过滤的条形码可以很容易地从新细胞过滤的条形码中读出。