项目名称: 石墨烯三维多孔杂化结构的原位合成及其储能特性
项目编号: No.51472177
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 赵乃勤
作者单位: 天津大学
项目金额: 82万元
中文摘要: 碳纳米材料具有优异的物理、化学和力学性能,在能源材料领域极具应用前景。但单一结构碳纳米材料易团聚而导致的有效比表面低、作为电极材料的结构稳定性和浸润性差等问题限制了其性能的发挥。本课题以新型石墨烯内嵌碳纳米洋葱(CNOs)三维多孔杂化结构的制备及其电化学特性为研究目标,将化学法和粉末冶金法相结合,在冷压CNOs/铜形成的预制体内,以CNOs表面接枝的分子链段为碳源,以铜粉骨架为模板和催化剂,经烧结实现石墨烯的原位生长,获得CNOs/石墨烯多孔复合结构。研究CNOs接枝、石墨烯生长和原位掺杂的影响因素和机理,探明石墨烯可控生长规律和调控途径;研究CNOs含量、孔结构对复合材料强度和电化学性能的影响;结合理论计算,探讨影响其电化学性能的关键因素,建立储能模型并阐明机理。该研究结果可望获得高导电、高强度、高效能的超电容电极用碳纳米复合材料,为高性能电化学储能器件的开发应用提供理论指导和技术途径。
中文关键词: 石墨烯;杂化;原位;储能;碳纳米洋葱
英文摘要: Carbon nano materials have good application prospect in the field of energy materials due to their excellent physical, chemical and mechanical properties. But the aggregation of single carbon nano materials, which results in low effective specific surface area, poor structural stability and wettability for electrode applications, restricts the display of their excellent performance. In this research, we focus on the synthesis of carbon nano-onions (CNOs) embedded three-dimensional (3-D) graphene porous hybrid structure and its electrochemical properties. Combined chemical method with powder metallurgy cold pressing-sintering, CNOs/Cu block precursor will be obtained. The graphene will be synthesized in-situ on Cu surface by the reaction of graft molecular chain on CNOs as carbon source and the Cu framework as template and catalyst during sintering process. Thus, the CNOs embedded graphene 3-D porous composite will be obtained. The effect factors and mechanism of grafting of CNOs, growing and in-situ doping of graphene, will be studied systematically in order to understanding the formation rule and controllable methods of the graphene. The influence of CNOs content, pore structures, pore sizes and distribution on the strength and the electrochemical properties of 3-D porous composite will also be explored. In addition, combined with theoretical calculation, the critical issues on electrochemical properties will be analyzed, and the electrochemical energy storage mechanism model will be built and discussed. As a result, it is hopeful to acquire a kind of carbon nano composites for supercapacitor electrode with high electrical conductivity, high strength and high efficiency. Moreover, the results will be able to provide theoretical guidance and technological approach for the development and application of high-performance electrochemical energy storage devices.
英文关键词: Graphene;Hybrid;In-situ;Energy storage;Carbon nano-onions