A limit theorem for the largest interpoint distance of $p$ independent and identically distributed points in $\mathbb{R}^n$ to the Gumbel distribution is proved, where the number of points $p=p_n$ tends to infinity as the dimension of the points $n\to\infty$. The theorem holds under moment assumptions and corresponding conditions on the growth rate of $p$. We obtain a plethora of ancillary results such as the joint convergence of maximum and minimum interpoint distances. Using the inherent sum structure of interpoint distances, our result is generalized to maxima of dependent random walks with non-decaying correlations and we also derive point process convergence. An application of the maximum interpoint distance to testing the equality of means for high-dimensional random vectors is presented. Moreover, we study the largest off-diagonal entry of a sample covariance matrix. The proofs are based on the Chen-Stein Poisson approximation method and Gaussian approximation to large deviation probabilities.
翻译:以 $mathbb{R ⁇ n$ 和 Gumbel 分布的 最大中间点距离为 $mathbb{R ⁇ n$ 和 相同分布点, 以 $mbel 分布为 $mathbb{R ⁇ n$ 的限值。 当点数 $p=p_n$ 时, 该点的大小往往与 $n\ to\ infty$ 的大小不尽相同。 该点数在假设和相应的条件下, 以美元增长率为单位。 我们获得了大量的辅助结果, 如最大和最小的中间点距离的联结。 使用点距离的内在总和结构, 我们的结果被广泛推广到 与非淡化的关联性随机行走的顶峰值, 我们也得出点进程趋同点进程趋同 。 此外, 我们用最大点间距离来测试高度随机矢量矢量矢量矩阵的最大非直径输入。 证据以 Chen- Stein Poisson 近比 和 Gaussian 接近值大偏差 为依据为基础。