A limit theorem for the largest interpoint distance of $p$ independent and identically distributed points in $\mathbb{R}^n$ to the Gumbel distribution is proved, where the number of points $p=p_n$ tends to infinity as the dimension of the points $n\to\infty$. The theorem holds under moment assumptions and corresponding conditions on the growth rate of $p$. We obtain a plethora of ancillary results such as the joint convergence of maximum and minimum interpoint distances. Using the inherent sum structure of interpoint distances, our result is generalized to maxima of dependent random walks with non-decaying correlations and we also derive point process convergence. An application of the maximum interpoint distance to testing the equality of means for high-dimensional random vectors is presented. Moreover, we study the largest off-diagonal entry of a sample covariance matrix. The proofs are based on the Chen-Stein Poisson approximation method and Gaussian approximation to large deviation probabilities.


翻译:以 $mathbb{R ⁇ n$ 和 Gumbel 分布的 最大中间点距离为 $mathbb{R ⁇ n$ 和 相同分布点, 以 $mbel 分布为 $mathbb{R ⁇ n$ 的限值。 当点数 $p=p_n$ 时, 该点的大小往往与 $n\ to\ infty$ 的大小不尽相同。 该点数在假设和相应的条件下, 以美元增长率为单位。 我们获得了大量的辅助结果, 如最大和最小的中间点距离的联结。 使用点距离的内在总和结构, 我们的结果被广泛推广到 与非淡化的关联性随机行走的顶峰值, 我们也得出点进程趋同点进程趋同 。 此外, 我们用最大点间距离来测试高度随机矢量矢量矢量矩阵的最大非直径输入。 证据以 Chen- Stein Poisson 近比 和 Gaussian 接近值大偏差 为依据为基础。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月31日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员