Time discretizations of phase-field systems have been studied. For example, a time discretization and an error estimate for a parabolic-parabolic phase-field system have been studied by Colli--K. [Commun. Pure Appl. Anal. 18 (2019)]. Also, a time discretization and an error estimate for a simultaneous abstract evolution equation applying parabolic-hyperbolic phase field systems and the linearized equations of coupled sound and heat flow have been studied (see K. [ESAIM Math. Model. Numer. Anal.54 (2020), Electron. J. Differential Equations 2020, Paper No. 96]). On the other hand, although existence, continuous dependence estimates and behavior of solutions to nonlocal phase-field systems with inertial terms have been studied by Grasselli--Petzeltov\'a--Schimperna [Quart. Appl. Math. 65 (2007)], time discretizations of these systems seem to be not studied yet. In this paper we focus on employing a time discretization scheme for a nonlocal phase-field system with inertial term and establishing an error estimate for the difference between continuous and discrete solutions.
翻译:研究了阶段野系统的时间离散,例如Colli-K.[Commun. Pure Appl. 18 (2019年) 研究了对抛光-抛光-抛光-抛光系统的时间离散和对抛光-抛光-抛光-分流系统的时间估计。此外,对同时使用的抽象进化方程应用抛光-抛光-分流系统以及声音和热流的线性方程式的时间离散和误差估计进行了研究(见K.[ESAIM Math. Model. Numer. Numer. Anal.54 (202020年),Exectron. J. differental Equalations 2020, Paper No. 96])。另一方面,尽管Grasselli-Petzeltov\\a-Schimperna[Quart. Appl. 65(2007年]已经研究过,但这些系统的时间离散化似乎还没有研究过。在本文件中,我们把重点放在对非局部阶段和离地方解决方案采用时间分解方法,以惯性周期和离差估计。