Time discretizations of phase-field systems have been studied. For example, a time discretization and an error estimate for a parabolic-parabolic phase-field system have been studied by Colli--K. [Commun. Pure Appl. Anal. 18 (2019)]. Also, a time discretization and an error estimate for a simultaneous abstract evolution equation applying parabolic-hyperbolic phase field systems and the linearized equations of coupled sound and heat flow have been studied (see K. [ESAIM Math. Model. Numer. Anal.54 (2020), Electron. J. Differential Equations 2020, Paper No. 96]). On the other hand, although existence, continuous dependence estimates and behavior of solutions to nonlocal phase-field systems with inertial terms have been studied by Grasselli--Petzeltov\'a--Schimperna [Quart. Appl. Math. 65 (2007)], time discretizations of these systems seem to be not studied yet. In this paper we focus on employing a time discretization scheme for a nonlocal phase-field system with inertial term and establishing an error estimate for the difference between continuous and discrete solutions.


翻译:研究了阶段野系统的时间离散,例如Colli-K.[Commun. Pure Appl. 18 (2019年) 研究了对抛光-抛光-抛光-抛光系统的时间离散和对抛光-抛光-抛光-分流系统的时间估计。此外,对同时使用的抽象进化方程应用抛光-抛光-分流系统以及声音和热流的线性方程式的时间离散和误差估计进行了研究(见K.[ESAIM Math. Model. Numer. Numer. Anal.54 (202020年),Exectron. J. differental Equalations 2020, Paper No. 96])。另一方面,尽管Grasselli-Petzeltov\\a-Schimperna[Quart. Appl. 65(2007年]已经研究过,但这些系统的时间离散化似乎还没有研究过。在本文件中,我们把重点放在对非局部阶段和离地方解决方案采用时间分解方法,以惯性周期和离差估计。

0
下载
关闭预览

相关内容

【NeurIPS2020-北大】非凸优化裁剪算法的改进分析
专知会员服务
29+阅读 · 2020年10月11日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
63+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员