In this article we formulate a stable computational nonlocal poromechanics model for dynamic analysis of saturated porous media. As a novelty, the stabilization formulation eliminates zero-energy modes associated with the original multiphase correspondence constitutive models in the coupled nonlocal poromechanics model. The two-phase stabilization scheme is formulated based on an energy method that incorporates inhomogeneous solid deformation and fluid flow. In this method, the nonlocal formulations of skeleton strain energy and fluid flow dissipation energy equate to their local formulations. The stable coupled nonlocal poromechanics model is solved for dynamic analysis by an implicit time integration scheme. As a new contribution, we validate the coupled stabilization formulation by comparing numerical results with analytical and finite element solutions for one-dimensional and two-dimensional dynamic problems in saturated porous media. Numerical examples of dynamic strain localization in saturated porous media are presented to demonstrate the efficacy of the stable coupled poromechanics framework for localized failure under dynamic loads.
翻译:在本篇文章中,我们为饱和多孔介质的动态分析制定了一种稳定的非本地的计算模型。作为一种新颖的做法,稳定配方消除了与原始多阶段对应模式相关的零能源模式,这些模式是结合非本地的复合机械模型的原始多阶段对应型模式。两阶段稳定制是根据一种能源方法制定的,该方法包括不对等的固态变形和流体流体。在这种方法中,骨骼紧张能量和流体分流能量的非本地配方与本地配方相当。稳定结合的非本地软体机械模型通过隐含的时间整合计划进行动态分析解决。作为一种新的贡献,我们通过将数字结果与饱和多孔介质中一维和二维动态问题的分析和有限元素解决方案进行比较,验证了结合的稳定制方。在饱和多孔介质的介质中,展示了富和多孔介质介质介质介质的动态本地化的动态压力本地化实例,以证明在动态载荷负负负负负下本地性失能的稳定性和软质性软体框架的功效。