The current high-fidelity generation and high-precision detection of DeepFake images are at an arms race. We believe that producing DeepFakes that are highly realistic and 'detection evasive' can serve the ultimate goal of improving future generation DeepFake detection capabilities. In this paper, we propose a simple yet powerful pipeline to reduce the artifact patterns of fake images without hurting image quality by performing implicit spatial-domain notch filtering. We first demonstrate that frequency-domain notch filtering, although famously shown to be effective in removing periodic noise in the spatial domain, is infeasible for our task at hand due to the manual designs required for the notch filters. We, therefore, resort to a learning-based approach to reproduce the notch filtering effects, but solely in the spatial domain. We adopt a combination of adding overwhelming spatial noise for breaking the periodic noise pattern and deep image filtering to reconstruct the noise-free fake images, and we name our method DeepNotch. Deep image filtering provides a specialized filter for each pixel in the noisy image, producing filtered images with high fidelity compared to their DeepFake counterparts. Moreover, we also use the semantic information of the image to generate an adversarial guidance map to add noise intelligently. Our large-scale evaluation on 3 representative state-of-the-art DeepFake detection methods (tested on 16 types of DeepFakes) has demonstrated that our technique significantly reduces the accuracy of these 3 fake image detection methods, 36.79% on average and up to 97.02% in the best case.


翻译:目前对DeepFake 图像的高度纤维化生成和高精密检测是一场军备竞赛。 我们相信, 制作高度现实和“ 检测蒸发” 的DeepFake(DeepFake) 能够达到改进下一代DeepFake(DeepFake) 检测能力的最终目标。 在本文中, 我们提出一个简单而有力的管道, 通过进行隐性的空间- 外观过滤, 来减少假图像的造型模式, 而不会伤害图像质量。 我们首先显示, 频率- 面观过滤虽然在空间域消除周期性噪音方面表现得非常有效, 但对于我们手头的任务来说是行不通的。 因此, 我们采用基于学习的方法复制隐性过滤效应, 仅在空间域内。 我们采用了一种简单而强大的管道, 来打破周期噪音模式, 和深层图像过滤器来重建无噪音的假图像。 深层图像过滤器为每个焦距图像提供最佳的过滤器, 因为需要用手边观过滤的手头设计。 因此, 我们采用基于高精确度检测方式复制图像的过滤图像, 与深层图像的精确度 3 对比, 我们使用了比例 。 在深度检测中, 我们的图像中, 将使用 的平级分析中, 的平级分析中, 也使用了一种显示的平级的平比 的平级 3 的平比 的平级 。</s>

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
25+阅读 · 2022年1月3日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员