The current high-fidelity generation and high-precision detection of DeepFake images are at an arms race. We believe that producing DeepFakes that are highly realistic and 'detection evasive' can serve the ultimate goal of improving future generation DeepFake detection capabilities. In this paper, we propose a simple yet powerful pipeline to reduce the artifact patterns of fake images without hurting image quality by performing implicit spatial-domain notch filtering. We first demonstrate that frequency-domain notch filtering, although famously shown to be effective in removing periodic noise in the spatial domain, is infeasible for our task at hand due to the manual designs required for the notch filters. We, therefore, resort to a learning-based approach to reproduce the notch filtering effects, but solely in the spatial domain. We adopt a combination of adding overwhelming spatial noise for breaking the periodic noise pattern and deep image filtering to reconstruct the noise-free fake images, and we name our method DeepNotch. Deep image filtering provides a specialized filter for each pixel in the noisy image, producing filtered images with high fidelity compared to their DeepFake counterparts. Moreover, we also use the semantic information of the image to generate an adversarial guidance map to add noise intelligently. Our large-scale evaluation on 3 representative state-of-the-art DeepFake detection methods (tested on 16 types of DeepFakes) has demonstrated that our technique significantly reduces the accuracy of these 3 fake image detection methods, 36.79% on average and up to 97.02% in the best case.
翻译:目前对DeepFake 图像的高度纤维化生成和高精密检测是一场军备竞赛。 我们相信, 制作高度现实和“ 检测蒸发” 的DeepFake(DeepFake) 能够达到改进下一代DeepFake(DeepFake) 检测能力的最终目标。 在本文中, 我们提出一个简单而有力的管道, 通过进行隐性的空间- 外观过滤, 来减少假图像的造型模式, 而不会伤害图像质量。 我们首先显示, 频率- 面观过滤虽然在空间域消除周期性噪音方面表现得非常有效, 但对于我们手头的任务来说是行不通的。 因此, 我们采用基于学习的方法复制隐性过滤效应, 仅在空间域内。 我们采用了一种简单而强大的管道, 来打破周期噪音模式, 和深层图像过滤器来重建无噪音的假图像。 深层图像过滤器为每个焦距图像提供最佳的过滤器, 因为需要用手边观过滤的手头设计。 因此, 我们采用基于高精确度检测方式复制图像的过滤图像, 与深层图像的精确度 3 对比, 我们使用了比例 。 在深度检测中, 我们的图像中, 将使用 的平级分析中, 的平级分析中, 也使用了一种显示的平级的平比 的平级 3 的平比 的平级 。</s>