We calculate finite sample and asymptotic distributions for the largest censored and uncensored survival times, and some related statistics, from a sample of survival data generated according to an iid censoring model. These statistics are important for assessing whether there is sufficient followup in the sample to be confident of the presence of immune or cured individuals in the population. A key structural result obtained is that, conditional on the value of the largest uncensored survival time, and knowing the number of censored observations exceeding this time, the sample partitions into two independent subsamples, each subsample having the distribution of an iid sample of censored survival times, of reduced size, from truncated random variables. This result provides valuable insight into the construction of censored survival data, and facilitates the calculation of explicit finite sample formulae. We illustrate for distributions of statistics useful for testing for sufficient followup in a sample, and apply extreme value methods to derive asymptotic distributions for some of those.


翻译:我们从根据一种静态审查模式产生的生存数据样本中,计算出最大受检查和未受检查的生存时间的有限抽样和零星分布,以及一些相关统计数据。这些统计数据对于评估样本中是否有足够的后续行动来确信人口中存在免疫或治愈的个人至关重要。我们取得的一个主要结构性结果是,根据最大未检查的生存时间的价值,并了解超过这一时间的受审查观察次数,抽样分解成两个独立的子样本,每个子样本都有经审查的存活时间、体积缩小、随机变数的分类样本。这一结果对受审查的生存数据的构建提供了宝贵的洞察力,并为计算明确的有限抽样公式提供了便利。我们举例说明了可用于在样本中测试充分后续行动的统计的分布情况,并运用极值方法对其中一些人进行无污染的分布。

0
下载
关闭预览

相关内容

《多任务学习》最新综述论文,20页pdf
专知会员服务
124+阅读 · 2021年4月6日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
《多任务学习》最新综述论文,20页pdf
专知会员服务
124+阅读 · 2021年4月6日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员