Accurate and agile trajectory tracking in sub-gram Micro Aerial Vehicles (MAVs) is challenging, as the small scale of the robot induces large model uncertainties, demanding robust feedback controllers, while the fast dynamics and computational constraints prevent the deployment of computationally expensive strategies. In this work, we present an approach for agile and computationally efficient trajectory tracking on the MIT SoftFly, a sub-gram MAV (0.7 grams). Our strategy employs a cascaded control scheme, where an adaptive attitude controller is combined with a neural network policy trained to imitate a trajectory tracking robust tube model predictive controller (RTMPC). The neural network policy is obtained using our recent work, which enables the policy to preserve the robustness of RTMPC, but at a fraction of its computational cost. We experimentally evaluate our approach, achieving position Root Mean Square Errors lower than 1.8 cm even in the more challenging maneuvers, obtaining a 60% reduction in maximum position error compared to our previous work, and demonstrating robustness to large external disturbances
翻译:精密和灵活的微航空飞行器(MAVs)轨迹跟踪是挑战性的,因为机器人的小型机器人引发了大型模型不确定性,要求强大的反馈控制器,而快速动态和计算限制则阻止了计算成本昂贵的战略的部署。在这项工作中,我们提出了一个在MIT SoftFly上灵活和计算高效轨迹跟踪的方法,这是一个子系统MAV(0.7克)。我们的战略采用一个级联控制计划,其中适应性姿态控制器与神经网络政策相结合,该神经网络政策经过培训,可以模仿跟踪强力管模型预测控制器(RTMPC)的轨迹。 神经网络政策是利用我们最近的工作获得的,这使得该政策能够保持RTMPC的稳健性,但只是其计算成本的一小部分。我们实验性地评估了我们的方法,在更具挑战性的动作中达到根中平方误差低于1.8厘米的位置,与我们以前的工作相比,最大位置误差减少了60%,并显示出对大外部扰动的稳健性。