Given a finite set $A\subset\mathbb{R}^d$, let Cov$_{r,k}$ denote the set of all points within distance $r$ to at least $k$ points of $A$. Allowing $r$ and $k$ to vary, we obtain a 2-parameter family of spaces that grow larger when $r$ increases or $k$ decreases, called the \emph{multicover bifiltration}. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one simplicial and the other polyhedral, which are both topologically equivalent to the multicover bifiltration and far smaller than a \v{C}ech-based model considered in prior work of Sheehy. Our polyhedral construction is a variant of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.
翻译:根据一个限定的 $A\ subset\ mathb{R ⁇ d$,让Cov$@r,k}$ 表示在距离内所有点的一组点数,至少是美元美元。允许美元和美元变化,我们得到一个2度空间的大家庭,当美元增加或美元减少时,这些空间会更大,称为 emph{ 多重覆盖双纤维过滤}。受计算这种浸泡的同质问题的影响,我们引入了两个密切相关的组合式双过滤器,一个是简易的,另一个是多元的,两者在表面上都相当于多层浸泡,远远小于希希亚以前工作中考虑的基于技术的模式。我们的聚合体建筑是Edelsbrunner 和 Osang 的Rhombobling的变体,并且可以使用这些作者提供的一种变体算法来进行高效的计算。我们用执行的尺寸2和3维度来提供实验性理解,我们提供了实验性的构建。