We present a method for reconstructing triangle meshes from point clouds. Existing learning-based methods for mesh reconstruction mostly generate triangles individually, making it hard to create manifold meshes. We leverage the properties of 2D Delaunay triangulations to construct a mesh from manifold surface elements. Our method first estimates local geodesic neighborhoods around each point. We then perform a 2D projection of these neighborhoods using a learned logarithmic map. A Delaunay triangulation in this 2D domain is guaranteed to produce a manifold patch, which we call a Delaunay surface element. We synchronize the local 2D projections of neighboring elements to maximize the manifoldness of the reconstructed mesh. Our results show that we achieve better overall manifoldness of our reconstructed meshes than current methods to reconstruct meshes with arbitrary topology. Our code, data and pretrained models can be found online: https://github.com/mrakotosaon/dse-meshing
翻译:我们提出了一个从点云重建三角间贝的方法。 现有的网状重建基于学习的方法大多产生单个三角, 使得难以创建多重网贝。 我们利用 2D Delaunay 三角对流的特性来用多面元素构建网格。 我们的方法首先估计了每个点周围的本地大地测量区。 然后我们用一个有学识的对数图对这些社区进行二维投影。 这个 2D 域的Delaunay 三角对流保证产生一个多块, 我们称之为Delaunay 表面元素。 我们同步了本地的相邻元素的二维预测, 以尽量扩大重建的网格的多重性。 我们的结果显示, 我们重建的网格比当前用任意的地貌重建 meshes 的方法要多得多。 我们的代码、 数据和预先训练模型可以在网上找到 : https://github.com/ mrakotosoon/dse-meshing 。