We present a new efficient OpenCL-based Accelerator for large scale Convolutional Neural Networks called Fast Inference on FPGAs for Convolution Neural Network (FFCNN). FFCNN is based on a deeply pipelined OpenCL kernels architecture. As pointed out before, high-level synthesis tools such as the OpenCL framework can easily port codes originally designed for CPUs and GPUs to FPGAs, but it is still difficult to make OpenCL codes run efficiently on FPGAs. This work aims to propose an efficient FPGA implementation of OpenCL High-Performance Computing Applications. To do so, a Data reuse and task mapping techniques are also presented to improve design efficiency. In addition, the following motivations were taken into account when developing FFCNN: 1) FFCNN has been designed to be easily implemented on Intel OpenCL SDK based FPGA design flow. 2) In FFFCN, different techniques have been integrated to improve the memory band with and throughput. A performance analysis is conducted on two deep CNN for Large-Scale Images classification. The obtained results, and the comparison with other works designed to accelerate the same types of architectures, show the efficiency and the competitiveness of the proposed accelerator design by significantly improved performance and resource utilization.


翻译:我们为大型革命神经网络提供了一个新的高效的OpenCL-基于OpenCL的快速加速器,称为FPGA用于革命神经网络的FPGA(FFCNN)快速推导器。FFFCNN以深入管道的 OpenCL内核结构为基础。如前所述,OpenCL框架等高级别综合工具可以很容易地在基于FPGA的Intel OpenCLSDK 设计流程中实施,但是,在FPGA上高效运行OpenCLCL代码仍然困难。这项工作的目的是建议PFGA高效地实施OpenCL高性计算机应用。为此,还提出了数据再利用和任务绘图技术以提高设计效率。此外,在开发FFCNNNNN时,还考虑到了以下动机:(1) FFCFCNNN可以很容易地在基于FGGA的设计流程的Intel OnCLSDK上实施。(2) 在FFFCN中,采用不同技术来改进记忆带和吞没。在大尺度图像分类中进行业绩分析。在两个深度CNNCLNCR的深部图像分类方面进行了绩效分析。为了大大加快使用,通过设计设计设计结构的改进了效率和比较。通过设计,以加速了设计,通过设计设计了设计了设计,从而大大地展示了效率,提高了了设计了设计,提高了了设计结构。提高了了设计。

0
下载
关闭预览

相关内容

OpenCL(Open Computing Language,开放计算语言)是一个为异构平台编写程序的框架,此异构平台可由 CPU,GPU 或其他类型的处理器组成。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月14日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员