Nonlinear and nonaffine terms in parametric partial differential equations can potentially lead to a computational cost of a reduced order model (ROM) that is comparable to the cost of the original full order model (FOM). To address this, the Reduced Residual Reduced Over-Collocation method (R2-ROC) is developed as a hyper-reduction method within the framework of the reduced basis method in the collocation setting. R2-ROC greedily selects two sets of reduced collocation points based on the (generalized) empirical interpolation method for both solution snapshots and residuals, thereby avoiding the computational inefficiency. The vanilla R2-ROC method can face instability when applied to parametric fluid dynamic problems. To address this, an adaptive enrichment strategy has been proposed to stabilize the ROC method. However, this strategy can involve in an excessive number of reduced collocation points, thereby negatively impacting online efficiency. To ensure both efficiency and accuracy, we propose an adaptive time partitioning and adaptive enrichment strategy-based ROC method (AAROC). The adaptive time partitioning dynamically captures the low-rank structure, necessitating fewer reduced collocation points being sampled in each time segment. Numerical experiments on the parametric viscous Burgers' equation and lid-driven cavity problems demonstrate the efficiency, enhanced stability, and accuracy of the proposed AAROC method.
翻译:暂无翻译