Computer vision and machine learning tools offer an exciting new way for automatically analyzing and categorizing information from complex computer simulations. Here we design an ensemble machine learning framework that can independently and robustly categorize and dissect simulation data output contents of turbulent flow patterns into distinct structure catalogues. The segmentation is performed using an unsupervised clustering algorithm, which segments physical structures by grouping together similar pixels in simulation images. The accuracy and robustness of the resulting segment region boundaries are enhanced by combining information from multiple simultaneously-evaluated clustering operations. The stacking of object segmentation evaluations is performed using image mask combination operations. This statistically-combined ensemble (SCE) of different cluster masks allows us to construct cluster reliability metrics for each pixel and for the associated segments without any prior user input. By comparing the similarity of different cluster occurrences in the ensemble, we can also assess the optimal number of clusters needed to describe the data. Furthermore, by relying on ensemble-averaged spatial segment region boundaries, the SCE method enables reconstruction of more accurate and robust region of interest (ROI) boundaries for the different image data clusters. We apply the SCE algorithm to 2-dimensional simulation data snapshots of magnetically-dominated fully-kinetic turbulent plasma flows where accurate ROI boundaries are needed for geometrical measurements of intermittent flow structures known as current sheets.
翻译:计算机视觉和机器学习工具为自动分析和分类来自复杂计算机模拟的信息提供了令人兴奋的新方式。 在这里, 我们设计了一个混合机学习框架, 能够独立和有力地对动荡流模式的模拟数据输出内容进行分类和分解, 将其分解成不同的结构目录。 分解使用一种不受监督的群集算法, 通过将模拟图像中的类似像素组合在一起, 分部分物理结构的相似性 。 通过将多个同时评价的组合作业中的信息组合在一起, 由此形成的区域段边界的准确性和稳健性得到加强 。 对象分解评价堆叠式使用图像掩码组合组合操作进行。 这种不同集面的统计组合混合共和混合(SCE) 使得我们能为每个像素流和相关部分的模拟数据输出建立群集可靠性指标。 通过比较组合图中不同组的相类似性, 我们还可以评估用于描述数据的最佳组数 。 此外, 借助混合- 平均空间段区域边界, SCE 方法能够重建更准确和稳健的区域区域域域(ROI) 边界区域, 用于不同地震- 级平流数据模拟流流流流数据, 我们将SMAIC- 平流数据系统平流, 平流数据系统平流, 应用了。