Knowledge Distillation has been established as a highly promising approach for training compact and faster models by transferring knowledge from heavyweight and powerful models. However, KD in its conventional version constitutes an enduring, computationally and memory demanding process. In this paper, Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner. We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space. This allows us for directly estimating the posterior class probabilities of the data samples, and we use them as soft labels that encode explicit information about the similarities of the data with the classes, negligibly affecting the computational cost. The experimental evaluation on four datasets validates the effectiveness of proposed method.
翻译:知识蒸馏已被确定为极有希望的方法,通过转让重重量和强力模型的知识来培训紧凑和更快的模型。然而,传统版本的KD是一个耐久、计算和记忆要求的过程。在本文中,提出了在线自得知识蒸馏(OSAKD),目的是以在线方式改进任何深神经模型的性能。我们使用 k-nn 非参数密度估计技术来估计输出特征空间内数据样品的未知概率分布。这使我们能够直接估计数据样品的后级等级概率,我们用它们作为软标签,将数据与分类的相似性明确信息编码起来,对计算成本产生明显影响。对四个数据集的实验性评估证实了拟议方法的有效性。