We investigate the applicability of artificial neural networks (ANNs) in reconstructing a sample image of a sponge-like microstructure. We propose to reconstruct the image by predicting the phase of the current pixel based on its causal neighbourhood, and subsequently, use a non-causal ANN model to smooth out the reconstructed image as a form of post-processing. We also consider the impacts of different configurations of the ANN model (e.g. number of densely connected layers, number of neurons in each layer, the size of both the causal and non-causal neighbourhood) on the models' predictive abilities quantified by the discrepancy between the spatial statistics of the reference and the reconstructed sample.
翻译:我们研究人工神经网络(ANNs)在重建类海绵微结构的样本图像中的应用性,我们提议重建图像,根据因果邻里预测当前像素的阶段,然后使用非因果邻里,使用非因果非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非