Large-scale training of modern deep learning models heavily relies on publicly available data on the web. This potentially unauthorized usage of online data leads to concerns regarding data privacy. Recent works aim to make unlearnable data for deep learning models by adding small, specially designed noises to tackle this issue. However, these methods are vulnerable to adversarial training (AT) and/or are computationally heavy. In this work, we propose a novel, model-free, Convolution-based Unlearnable DAtaset (CUDA) generation technique. CUDA is generated using controlled class-wise convolutions with filters that are randomly generated via a private key. CUDA encourages the network to learn the relation between filters and labels rather than informative features for classifying the clean data. We develop some theoretical analysis demonstrating that CUDA can successfully poison Gaussian mixture data by reducing the clean data performance of the optimal Bayes classifier. We also empirically demonstrate the effectiveness of CUDA with various datasets (CIFAR-10, CIFAR-100, ImageNet-100, and Tiny-ImageNet), and architectures (ResNet-18, VGG-16, Wide ResNet-34-10, DenseNet-121, DeIT, EfficientNetV2-S, and MobileNetV2). Our experiments show that CUDA is robust to various data augmentations and training approaches such as smoothing, AT with different budgets, transfer learning, and fine-tuning. For instance, training a ResNet-18 on ImageNet-100 CUDA achieves only 8.96$\%$, 40.08$\%$, and 20.58$\%$ clean test accuracies with empirical risk minimization (ERM), $L_{\infty}$ AT, and $L_{2}$ AT, respectively. Here, ERM on the clean training data achieves a clean test accuracy of 80.66$\%$. CUDA exhibits unlearnability effect with ERM even when only a fraction of the training dataset is perturbed. Furthermore, we also show that CUDA is robust to adaptive defenses designed specifically to break it.
翻译:对现代深层学习模式的大规模培训在很大程度上依赖于网上公开提供的数据。 这种潜在的未经授权使用在线数据的做法可能导致对数据隐私的担忧。 最近的工作旨在通过添加小型、专门设计的噪音,为深层学习模式提供不可读取的数据。 但是,这些方法容易受到对抗性培训(AT)和(或)计算过重。 在这项工作中,我们建议采用新型的、无模式的、基于革命的可读性达塔塞特(CUDA)生成技术。 CUDA 使用通过私人密钥随机生成的过滤器进行控制的阶级级变迁。 CUDA 网络鼓励网络学习过滤器和标签之间的关系,而不是用于分类清洁数据的信息特性。 我们开发了一些理论分析表明,CUDA能够通过降低最佳贝亚分类器的清洁数据性性能,我们仅用各种数据集(CIFAR-10, CFAR-100, 图像网-100 和TINAL-IMUD) 来证明 CAR-VAL-DODA 数据测试(AS-DRRMD) 和OIAL-DA ASUD ASUD ASUD ADA、C-DA、C-DRUDRUDA、C-DRUD-D-D-DS-DS-D-D-D-DDDDDDDDDDS-DDDDDA、ODA、C-DODS-DA、C-DDDDDDDDDDDDDSDDDDDDDDDDDDDDSDDDDDDDDDDDDDDDDA、ASDA、ASDA、ASDA、ASDA、ASDA、ASDA、ASDA、ASD、ASDA、CA、ASD、ASD、ASDDDDDDDDDDD、ASDDDDDD、ASD、ASDDDDDDDDDDDDDD、ASDDDDD、ASD、ASDDDDDDDA、ASDA、ASDA、ASDA、ASDA、ASDDDDDDDDDD</s>