We propose Universal MelGAN, a vocoder that synthesizes high-fidelity speech in multiple domains. To preserve sound quality when the MelGAN-based structure is trained with a dataset of hundreds of speakers, we added multi-resolution spectrogram discriminators to sharpen the spectral resolution of the generated waveforms. This enables the model to generate realistic waveforms of multi-speakers, by alleviating the over-smoothing problem in the high frequency band of the large footprint model. Our structure generates signals close to ground-truth data without reducing the inference speed, by discriminating the waveform and spectrogram during training. The model achieved the best mean opinion score (MOS) in most scenarios using ground-truth mel-spectrogram as an input. Especially, it showed superior performance in unseen domains with regard of speaker, emotion, and language. Moreover, in a multi-speaker text-to-speech scenario using mel-spectrogram generated by a transformer model, it synthesized high-fidelity speech of 4.22 MOS. These results, achieved without external domain information, highlight the potential of the proposed model as a universal vocoder.
翻译:我们建议通用的MelGAN, 是一个在多个领域合成高友谊言词的电动编码器。 在对以MelGAN为基础的结构进行数百个发言者数据集的培训时, 为了保持健全的质量, 我们添加了多分辨率光谱分析器, 以强化生成波形的光谱分辨率。 使模型能够通过减轻大型足迹模型高频波段的过度移动问题, 产生现实的多声波变形。 我们的结构在不降低推断速度的情况下生成接近地面真实数据的信号。 通过在培训中区分波形和光谱, 模型在多数情况下都取得了最佳的中值评分( MOS ), 使用地光谱光谱- 光谱作为投入。 特别是, 模型显示在看不见的域中, 语言、 语言、 语言 、 和 音频的超强功能。 此外, 在使用变异模型生成的多频文本到语音假设中, 它综合了高纤维模型的信号, 并且通过在培训中区分波形和光谱显示速度。 MOS 22, 这些结果在没有外部域域中实现了。 这些结果, 显示, 这些结果显示, 显示全球域 。