We consider a dataset $S$ held by an agency, and a vector query of interest, $f(S) \in \mathbb{R}^k$, to be posed by an analyst, which contains the information required for certain planned statistical inference. The agency releases the requested vector query with noise that guarantees a given level of Differential Privacy -- DP$(\varepsilon,\delta)$ -- using the well-known Gaussian mechanism. The analyst can choose to pose the vector query $f(S)$ or to adjust it by a suitable transformation that can make the agency's response more informative. For any given level of privacy DP$(\varepsilon,\delta)$ decided by the agency, we study natural situations where the analyst can achieve better statistical inference by adjusting the query with a suitable simple explicit transformation.
翻译:我们认为一个机构持有的数据集$S美元,而由分析师提出一个有关矢量的查询,即$f(S)$@in\mathbb{R ⁇ k$,该查询包含某些计划统计推断所需的信息。该机构以噪音发布所要求的矢量查询,保证特定水平的不同隐私 -- -- DP$(\varepsilon,\delta) -- -- 使用众所周知的高斯机制。分析师可以选择提出矢量查询$f(S) $(S),或者通过适当的转换来调整该矢量查询,使机构的答复信息更加丰富。对于机构决定的任何特定级别的隐私DP$(\varepsilon,\delta),我们研究分析员通过以适当的简单明确转换调整查询可以实现更好的统计推断的自然情况。