For a general third-order tensor $\mathcal{A}\in\mathbb{R}^{n\times n\times n}$ the paper studies two closely related problems, an SVD-like tensor decomposition and an (approximate) tensor diagonalization. We develop a Jacobi-type algorithm that works on $2\times2\times2$ subtensors and, in each iteration, maximizes the sum of squares of its diagonal entries. We show how the rotation angles are calculated and prove convergence of the algorithm. Different initializations of the algorithm are discussed, as well as the special cases of symmetric and antisymmetric tensors. The algorithm can be generalized to work on higher-order tensors.
翻译:对于一般的三阶高压 $mathcal{A ⁇ in\mathbb{R ⁇ n\times n\time n}$, 论文研究了两个密切相关的问题, SVD 类高压分解和(近似) 高压分解。 我们开发了一种雅各式算法, 使用 2\ times2\ time2 $suites2 sultensors2, 在每次迭代中, 最大限度地增加其对角条目的平方之和。 我们展示了旋转角度是如何计算并证明算法的趋同。 讨论了不同初始化的算法, 以及对称和反对称高压的特例。 算法可以普遍化为高阶高压。