In this paper, we propose an efficient exponential integrator finite element method for solving a class of semilinear parabolic equations in rectangular domains. The proposed method first performs the spatial discretization of the model equation using the finite element approximation with continuous multilinear rectangular basis functions, and then takes the explicit exponential Runge-Kutta approach for time integration of the resulting semi-discrete system to produce fully-discrete numerical solution. Under certain regularity assumptions, error estimates measured in $H^1$-norm are successfully derived for the proposed schemes with one and two RK stages. More remarkably, the mass and coefficient matrices of the proposed method can be simultaneously diagonalized with an orthogonal matrix, which provides a fast solution process based on tensor product spectral decomposition and fast Fourier transform. Various numerical experiments in two and three dimensions are also carried out to validate the theoretical results and demonstrate the excellent performance of the proposed method.
翻译:在本文中,我们提出了一种高效的指数集成器有限元素方法,用于在矩形域中解决某类半线性抛物线方程。拟议方法首先使用带有连续多线性矩形功能的有限元素近似值来进行模型方程的空间分解,然后采用明确的指数化龙格-库塔方法,对由此形成的半分解系统进行时间整合,以产生完全分解的数字解决方案。在某些常规假设下,以$H$1美元-诺尔姆计量的误差估计为1个和2个RK级的拟议方案成功得出。更明显的是,拟议方法的质量和系数矩阵可以与一个正方形矩阵同时进行对角化,该矩阵提供了一个基于高压产品光谱分解和快速变形的快速解析过程。还进行了两个和三个层面的各种数字实验,以验证理论结果并展示拟议方法的出色性能。