Large pretrained language models like GPT-3 have acquired a surprising ability to perform zero-shot classification (ZSC). For example, to classify review sentiments, we can "prompt" the language model with the review and the question "Is the review positive?" as the context, and ask it to predict whether the next word is "Yes" or "No". However, these models are not specialized for answering these prompts. To address this weakness, we propose meta-tuning, which trains the model to specialize in answering prompts but still generalize to unseen tasks. To create the training data, we aggregated 43 existing datasets, annotated 441 label descriptions in total, and unified them into the above question answering (QA) format. After meta-tuning, our model outperforms a same-sized QA model for most labels on unseen tasks, and we forecast that the performance would improve for even larger models. Therefore, measuring ZSC performance on non-specialized language models might underestimate their true capability, and community-wide efforts on aggregating datasets and unifying their formats can help build models that understand prompts better.


翻译:GPT-3等大型预先培训的语言模型已经获得了执行零发分类(ZSC)的惊人能力。例如,为了对审查情绪进行分类,我们可以“立即”使用审查模式,并用“审查是否积极”作为上下文的问题,要求它预测下一个词是“是”还是“否”。然而,这些模型并不是专门用来回答这些提示的。为了解决这一弱点,我们建议元调整,即培训模型专门回答提示,但仍然笼统地概括到不可见的任务。为了创建培训数据,我们汇总了43个现有数据集,总共加注了441个标签说明,并将其统一到上述问题解答(QA)格式中。在元调整后,我们的模型超越了大多数关于不可见任务标签的相同大小的QA模型,我们预测说,在更大的模型中,业绩会得到改善。因此,测量非专门语言模型的ZSC性能可能会低估其真实能力,而社区范围在汇集数据集和统一格式方面所做的努力有助于建立更能理解的模型。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
21+阅读 · 2019年8月21日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
5+阅读 · 2018年1月18日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员