We present a theoretical framework of probabilistic learning derived by Maximum Probability (MP) Theorem shown in the current paper. In this probabilistic framework, a model is defined as an event in the probability space, and a model or the associated event - either the true underlying model or the parameterized model - have a quantified probability measure. This quantification of a model's probability measure is derived by the MP Theorem, in which we have shown that an event's probability measure has an upper-bound given its conditional distribution on an arbitrary random variable. Through this alternative framework, the notion of model parameters is encompassed in the definition of the model or the associated event. Therefore, this framework deviates from the conventional approach of assuming a prior on the model parameters. Instead, the regularizing effects of assuming prior over parameters is seen through maximizing probabilities of models or according to information theory, minimizing the information content of a model. The probability of a model in our framework is invariant to reparameterization and is solely dependent on the model's likelihood function. Also, rather than maximizing the posterior in a conventional Bayesian setting, the objective function in our alternative framework is defined as the probability of set operations (e.g. intersection) on the event of the true underlying model and the event of the model at hand. Our theoretical framework, as a derivation of MP theorem, adds clarity to probabilistic learning through solidifying the definition of probabilistic models, quantifying their probabilities, and providing a visual understanding of objective functions.


翻译:我们提出了一个从最大概率(MP)理论中得出的概率学习理论理论的理论框架。 在这个概率框架中, 模型被定义为概率空间中的一个事件, 模型或相关事件( 真正的基础模型或参数化模型) 具有量化的概率测量。 模型概率测量的量化由 MP 理论得出, 我们在该理论中显示, 事件概率测量具有上限, 因为它的有条件分布以任意随机变量为条件。 通过这个替代框架, 模型参数的概念包含在模型或相关事件的定义中。 因此, 这个框架偏离了假设模型参数之前的常规方法, 而模型或参数参数参数的参数的模型或相关模型的参数, 具有量化效果的正规化效果是通过模型的概率或者根据信息理论, 最大限度地减少模型的信息内容。 我们框架中的模型概率是不可逆的, 完全取决于模型的可能性函数。 此外, 模型参数的概念概念概念概念概念概念包含模型的精确度或相关事件的定义, 而不是将模型的后半数值最大化, 以常规的精确度定义作为我们学习的精确度框架 。 目标函数 以我们的精确性 提供我们学习的概率 的精确性 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
29+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
6+阅读 · 2017年7月17日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员