Spectral clustering techniques are valuable tools in signal processing and machine learning for partitioning complex data sets. The effectiveness of spectral clustering stems from constructing a non-linear embedding based on creating a similarity graph and computing the spectral decomposition of the Laplacian matrix. However, spectral clustering methods fail to scale to large data sets because of high computational cost and memory usage. A popular approach for addressing these problems utilizes the Nystrom method, an efficient sampling-based algorithm for computing low-rank approximations to large positive semi-definite matrices. This paper demonstrates how the previously popular approach of Nystrom-based spectral clustering has severe limitations. Existing time-efficient methods ignore critical information by prematurely reducing the rank of the similarity matrix associated with sampled points. Also, current understanding is limited regarding how utilizing the Nystrom approximation will affect the quality of spectral embedding approximations. To address the limitations, this work presents a principled spectral clustering algorithm that exploits spectral properties of the similarity matrix associated with sampled points to regulate accuracy-efficiency trade-offs. We provide theoretical results to reduce the current gap and present numerical experiments with real and synthetic data. Empirical results demonstrate the efficacy and efficiency of the proposed method compared to existing spectral clustering techniques based on the Nystrom method and other efficient methods. The overarching goal of this work is to provide an improved baseline for future research directions to accelerate spectral clustering.


翻译:光谱群集技术是用于分配复杂数据集的信号处理和机器学习的宝贵工具。光谱群集之所以有效,是因为在创建类似图形的基础上构建了非线性嵌入系统,并计算了拉普拉西亚矩阵的光谱分解。然而,光谱群集方法由于计算成本和记忆使用率高,未能规模到大型数据集。一种解决这些问题的流行方法是利用Nystrom方法,一种高效的基于抽样的算法,用于计算低级别近似于大正半无限期基质的光谱组集。本文展示了以前流行的Nystrom光谱群集方法是如何有严重局限性的。现有的时间效率方法忽略了关键信息,过早地降低了与抽样点相关的类似矩阵组群的级别。此外,目前对使用Nystrom光谱集方法将如何影响光谱嵌入近似质量的理解有限。为了克服这些局限性,这项工作提出了一种基于抽样点的相近光谱组合法的光谱集算算法,以调节精确性交易。我们提供了理论结果,以缩小当前差距,目前的数字化实验将关键信息忽略了关键信息,因为过早地减少了与抽样基基集组群集研究的层次组群集法和合成方法将展示了以实际和合成组群集方法。

1
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年12月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
已删除
将门创投
6+阅读 · 2017年7月6日
Arxiv
0+阅读 · 2021年3月25日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
已删除
将门创投
6+阅读 · 2017年7月6日
Top
微信扫码咨询专知VIP会员