Persistence diagrams are important tools in the field of topological data analysis that describe the presence and magnitude of features in a filtered topological space. However, current approaches for comparing a persistence diagram to a set of other persistence diagrams is linear in the number of diagrams or do not offer performance guarantees. In this paper, we apply concepts from locality-sensitive hashing to support approximate nearest neighbor search in the space of persistence diagrams. Given a set $\Gamma$ of $n$ $(M,m)$-bounded persistence diagrams, each with at most $m$ points, we snap-round the points of each diagram to points on a cubical lattice and produce a key for each possible snap-rounding. Specifically, we fix a grid over each diagram at several resolutions and consider the snap-roundings of each diagram to the four nearest lattice points. Then, we propose a data structure with $\tau$ levels $\mathbb{D}_{\tau}$ that stores all snap-roundings of each persistence diagram in $\Gamma$ at each resolution. This data structure has size $O(n5^m\tau)$ to account for varying lattice resolutions as well as snap-roundings and the deletion of points with low persistence. To search for a persistence diagram, we compute a key for a query diagram by snapping each point to a lattice and deleting points of low persistence. Furthermore, as the lattice parameter decreases, searching our data structure yields a six-approximation of the nearest diagram in $\Gamma$ in $O((m\log{n}+m^2)\log\tau)$ time and a constant factor approximation of the $k$th nearest diagram in $O((m\log{n}+m^2+k)\log\tau)$ time.


翻译: Persistant 图表是表层数据分析领域的重要工具, 描述在过滤的表层空间中存在和规模的特征 。 然而, 目前将持续性图与一组其他持久性图比较的方法在图表数量上是线性的, 或者不提供性能保障 。 在本文中, 我们使用对地敏感的散列概念支持在持久性图空间中近邻搜索。 一套美元为$( m, m) 的直线持续性图表, 每种以美元为单位, 我们将每张图的点折叠到每张直线图的点上。 具体地说, 我们在几个分辨率上为每张图设置一个网格, 考虑每张图的折圈到四个最接近的拉蒂点。 然后, 我们提出一个数据结构, 美元为 美元=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
专知会员服务
62+阅读 · 2020年3月4日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月16日
Arxiv
0+阅读 · 2021年5月14日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员