Discrepancy is a natural measure for the inherent complexity of set systems with many applications in mathematics and computer science. The discrepancy of a set system $(U,\mathscr S)$ is the minimum over all mappings $\chi\colon U\rightarrow\{-1,1\}$ of $\max_{S\in\mathscr S}\bigl|\sum_{v\in S}\chi(v)\bigr|$. We study the discrepancy of set systems that are first-order definable in sparse graph classes. We prove that all the set systems definable in a monotone class $\mathscr C$ have bounded discrepancy if and only if $\mathscr C$ has bounded expansion, and that they have hereditary discrepancy at most $|U|^{c}$ (for some~$c<1/2$) if and only if $\mathscr C$ is nowhere dense. However, if $\mathscr C$ is somewhere dense, then for every positive integer $d$ there is a set system of $d$-tuples definable in $\mathscr C$ with discrepancy $\Omega(|U|^{1/2})$. From the algorithmic point of view, we prove that if $\mathscr C$ is a class of graphs with bounded expansion and $\phi(\bar x;\bar y)$ is a first-order formula, then for each input graph $G\in\mathscr C$, a mapping $\chi:V(G)^{|\bar x|}\rightarrow\{-1,1\}$ witnessing the boundedness of the discrepancy of the set-system defined by~$\phi$ can be computed in $\mathcal O(|G|^{|\bar x|})$ time. We also deduce that for such set-systems, when $|\bar x|=1$, $\varepsilon$-nets of size $\mathcal{O}(1/\varepsilon)$ can be computed in time $\mathcal{O}(|G|\,\log |G|)$ and $\varepsilon$-approximations of size $\mathcal{O}(1/\varepsilon)$ can be computed in polynomial time.


翻译:(v)\ bigr}} 在数学和计算机科学中, 设置系统的内在复杂性是自然的。 设定的系统( U,\ mathscr S) 的差额是所有映像的最小值 $\ chile Urightrow_ 1, 1 $\\ mathscrcrcr\ m) S\\ chi( v)\ mathcr_ 美元。 我们研究在分散的图形类中, 最先解析的系统的差异。 我们证明, 所有设定的系统( 美元) 在单调级 $ (U, mathrcrcr) 中, 美元 美元, 美元 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元。

0
下载
关闭预览

相关内容

【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【 关关的刷题日记47】Leetcode 38. Count and Say
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月26日
Arxiv
0+阅读 · 2021年6月25日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【 关关的刷题日记47】Leetcode 38. Count and Say
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员