In this work, we address the longstanding puzzle that Sliced Inverse Regression (SIR) often performs poorly for sufficient dimension reduction when the structural dimension $d$ (the dimension of the central space) exceeds 4. We first show that in the multiple index model $Y=f( \mathbf{P} \boldsymbol{X})+\epsilon$ where $\boldsymbol{X}$ is a $p$-standard normal vector, $\epsilon$ is an independent noise, and $\mathbf{P}$ is a projection operator from $\mathbb R^{p}$ to $\mathbb R^{d}$, if the link function $f$ follows the law of a Gaussian process, then with high probability, the $d$-th eigenvalue $\lambda_{d}$ of $\mathrm{Cov}\left[\mathbb{E}(\boldsymbol{X}\mid Y)\right]$ satisfies $\lambda_{d}\leq C e^{-\theta d}$ for some positive constants $C$ and $\theta$. We then focus on the low signal regime where $\lambda_{d}$ can be arbitrarily small and not larger than $d^{-8.1}$, and prove that the minimax risk of estimating the central space is lower bounded by $\frac{dp}{n\lambda_{d}}$. Combining these two results, we provide a convincing explanation for the poor performance of SIR when $d$ is large, a phenomenon that has perplexed researchers for nearly three decades. The technical tools developed here may be of independent interest for studying other sufficient dimension reduction methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
15+阅读 · 2021年7月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员