This paper studies task adaptive pre-trained model selection, an underexplored problem of assessing pre-trained models for the target task and select best ones from the model zoo \emph{without fine-tuning}. A few pilot works addressed the problem in transferring supervised pre-trained models to classification tasks, but they cannot handle emerging unsupervised pre-trained models or regression tasks. In pursuit of a practical assessment method, we propose to estimate the maximum value of label evidence given features extracted by pre-trained models. Unlike the maximum likelihood, the maximum evidence is \emph{immune to over-fitting}, while its expensive computation can be dramatically reduced by our carefully designed algorithm. The Logarithm of Maximum Evidence (LogME) can be used to assess pre-trained models for transfer learning: a pre-trained model with a high LogME value is likely to have good transfer performance. LogME is \emph{fast, accurate, and general}, characterizing itself as the first practical method for assessing pre-trained models. Compared with brute-force fine-tuning, LogME brings at most $3000\times$ speedup in wall-clock time and requires only $1\%$ memory footprint. It outperforms prior methods by a large margin in their setting and is applicable to new settings. It is general enough for diverse pre-trained models (supervised pre-trained and unsupervised pre-trained), downstream tasks (classification and regression), and modalities (vision and language). Code is available at this repository: \href{https://github.com/thuml/LogME}{https://github.com/thuml/LogME}.


翻译:本文研究 任务 适应 预先 培训 模式 选择 适应 适应 受 培训 模式 任务 适应 受 培训 模式, 一个未充分探讨的问题 : 评估目标任务 。 一些试点工作 解决了将受监督 接受 培训 模式 转到 分类 任务 的问题, 但是它们无法处理 新出现的 未经 监督 接受 培训 模式 或 回归 任务 。 在追求一个实用的评估方法时, 我们提议估计 由事先 培训 模式 提取 的标签证据的最大值 。 与最大可能性不同, 最大证据是 : 评估目标任务 : 评估 目标任务 : 目标 受培训 : 最大 目标 : 最大 定义 : 最大 定义 定义 : 将自己 描述为第一个实际评估 的 。 与 定义 相比, 最强的 修正, 最昂贵的计算方法 。 最昂贵的 3 000\ 时间 。 最大 证据 (L ) ) 用于 最 最 最 最 的 最 的 最 的 最 的 最 的 的 的 最 的 的 模式,,, 最 最 最 最 的 的 最 的 的 的 的 的 的 的,, 最 的 最 最 的 的 的 的 的 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
<好书推荐> -《Pro Deep Learning with TensorFlow》分享
深度学习与NLP
12+阅读 · 2018年9月13日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
What do pre-trained code models know about code?
Arxiv
0+阅读 · 2021年8月25日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Arxiv
4+阅读 · 2019年2月8日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
<好书推荐> -《Pro Deep Learning with TensorFlow》分享
深度学习与NLP
12+阅读 · 2018年9月13日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员